File size: 15,940 Bytes
f9a7c9b a5c9e62 f9a7c9b a5c9e62 f9a7c9b a5c9e62 f9a7c9b 7f6ab11 a5c9e62 7f6ab11 a5c9e62 7f6ab11 a5c9e62 7f6ab11 a5c9e62 7f6ab11 a5c9e62 7f6ab11 a5c9e62 7f6ab11 a5c9e62 7f6ab11 a5c9e62 7f6ab11 a5c9e62 7f6ab11 a5c9e62 7f6ab11 a5c9e62 7f6ab11 a5c9e62 7f6ab11 a5c9e62 7f6ab11 a5c9e62 52ee323 a5c9e62 7f6ab11 a5c9e62 7f6ab11 a5c9e62 7f6ab11 a5c9e62 7f6ab11 a5c9e62 7f6ab11 a5c9e62 11d4518 a5c9e62 7f6ab11 a5c9e62 f9a7c9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
from langchain.tools import Tool
import requests
import os
from PIL import Image
import io
import base64
from ddgs import DDGS
from typing import Optional
import json
import PyPDF2
import tempfile
import requests
from bs4 import BeautifulSoup
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.schema import Document
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
def file_download_tool_func(task_id: str) -> str:
"""Downloads a file associated with a GAIA task ID."""
try:
api_url = "https://agents-course-unit4-scoring.hf.space"
file_url = f"{api_url}/files/{task_id}"
response = requests.get(file_url, timeout=30)
response.raise_for_status()
# Save to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".tmp") as temp_file:
temp_file.write(response.content)
temp_path = temp_file.name
# Try to determine file type and process accordingly
content_type = response.headers.get('content-type', '').lower()
if 'image' in content_type:
return f"Image file downloaded to {temp_path}. Use image_analysis_tool to analyze it."
elif 'pdf' in content_type:
return process_pdf_file(temp_path)
elif 'text' in content_type:
with open(temp_path, 'r', encoding='utf-8') as f:
content = f.read()
os.unlink(temp_path) # Clean up
return f"Text file content:\n{content}"
else:
return f"File downloaded to {temp_path}. Content type: {content_type}"
except Exception as e:
return f"Failed to download file for task {task_id}: {str(e)}"
def process_pdf_file(file_path: str) -> str:
"""Process a PDF file and extract text content."""
try:
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
text_content = ""
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text_content += f"\n--- Page {page_num + 1} ---\n"
text_content += page.extract_text()
os.unlink(file_path) # Clean up
return f"PDF content extracted:\n{text_content}"
except Exception as e:
return f"Failed to process PDF: {str(e)}"
file_download_tool = Tool(
name="file_download",
func=file_download_tool_func,
description="Downloads and processes files associated with GAIA task IDs. Can handle images, PDFs, and text files."
)
def image_analysis_tool_func(image_path_or_description: str) -> str:
"""Analyzes images for GAIA questions. For now, returns a placeholder."""
# This is a simplified version - in a full implementation, you'd use a vision model
try:
if os.path.exists(image_path_or_description):
# Try to open and get basic info about the image
with Image.open(image_path_or_description) as img:
width, height = img.size
mode = img.mode
format_info = img.format
# Clean up the temporary file
os.unlink(image_path_or_description)
return f"Image analyzed: {width}x{height} pixels, mode: {mode}, format: {format_info}. Note: This is a basic analysis. For detailed image content analysis, a vision model would be needed."
else:
return f"Image analysis requested for: {image_path_or_description}. Note: Full image analysis requires a vision model integration."
except Exception as e:
return f"Image analysis failed: {str(e)}"
image_analysis_tool = Tool(
name="image_analysis",
func=image_analysis_tool_func,
description="Analyzes images to extract information. Use this for questions involving visual content."
)
def text_processor_tool_func(text: str, operation: str = "summarize") -> str:
"""Processes text for various operations like summarization, extraction, etc."""
try:
if operation == "summarize":
# Simple summarization - take first and last sentences if long
sentences = text.split('.')
if len(sentences) > 5:
summary = '. '.join(sentences[:2] + sentences[-2:])
return f"Text summary: {summary}"
else:
return f"Text (short enough to not need summarization): {text}"
elif operation == "extract_numbers":
import re
numbers = re.findall(r'\d+(?:\.\d+)?', text)
return f"Numbers found in text: {numbers}"
elif operation == "extract_dates":
import re
# Simple date pattern matching
date_patterns = [
r'\d{1,2}/\d{1,2}/\d{4}', # MM/DD/YYYY
r'\d{4}-\d{1,2}-\d{1,2}', # YYYY-MM-DD
r'\b\w+ \d{1,2}, \d{4}\b' # Month DD, YYYY
]
dates = []
for pattern in date_patterns:
dates.extend(re.findall(pattern, text))
return f"Dates found in text: {dates}"
else:
return f"Text processing operation '{operation}' not supported. Available: summarize, extract_numbers, extract_dates"
except Exception as e:
return f"Text processing failed: {str(e)}"
text_processor_tool = Tool(
name="text_processor",
func=text_processor_tool_func,
description="Processes text for various operations like summarization, number extraction, date extraction. Specify operation as second parameter."
)
def enhanced_web_retrieval_tool_func(query: str, backend: str = "bing") -> str:
"""Enhanced web search with cascading fallback: Wikipedia first, then general web search."""
try:
print(f"π Enhanced web retrieval for: {query}")
# Step 1: Try Wikipedia search first
print("π Searching Wikipedia...")
wikipedia_results = get_wikipedia_search_urls(query, backend)
if has_sufficient_results(wikipedia_results):
print(f"β
Found {len(wikipedia_results)} Wikipedia results")
documents = fetch_and_process_results(wikipedia_results, "Wikipedia")
if documents:
return search_documents_with_vector_store(documents, query, "Wikipedia")
# Step 2: Fallback to general web search
print("π Wikipedia results insufficient, searching general web...")
web_results = get_general_web_search_urls(query, backend)
if web_results:
print(f"β
Found {len(web_results)} general web results")
documents = fetch_and_process_results(web_results, "General Web")
if documents:
return search_documents_with_vector_store(documents, query, "General Web")
return "No sufficient results found in Wikipedia or general web search."
except Exception as e:
return f"Enhanced web retrieval failed: {str(e)}"
def get_wikipedia_search_urls(query: str, backend: str = "auto") -> list:
"""Get search results from English Wikipedia using DDGS."""
try:
with DDGS() as ddgs:
# Create Wikipedia-specific search queries
wikipedia_queries = [
f"{query} site:en.wikipedia.org"
]
search_results = []
seen_urls = set()
for wiki_query in wikipedia_queries:
try:
results = list(ddgs.text(
wiki_query,
max_results=8,
region="us-en",
backend=backend,
safesearch="moderate"
))
for result in results:
url = result.get('href', '')
# Only include Wikipedia URLs and avoid duplicates
if 'en.wikipedia.org' in url and url not in seen_urls:
search_results.append({
'url': url,
'title': result.get('title', 'No title'),
'snippet': result.get('body', 'No content')
})
seen_urls.add(url)
# Limit to 6 unique Wikipedia pages
if len(search_results) >= 6:
break
if len(search_results) >= 6:
break
except Exception as e:
print(f"Wikipedia search attempt failed: {e}")
continue
return search_results
except Exception as e:
print(f"Wikipedia search URL retrieval failed: {e}")
return []
def get_general_web_search_urls(query: str, backend: str = "auto") -> list:
"""Get search results from general web using DDGS."""
try:
with DDGS() as ddgs:
search_results = []
seen_urls = set()
try:
# General web search without site restriction
results = list(ddgs.text(
query,
max_results=8,
region="us-en",
backend=backend,
safesearch="moderate"
))
for result in results:
url = result.get('href', '')
# Avoid duplicates and filter out low-quality sources
if url not in seen_urls and is_quality_source(url):
search_results.append({
'url': url,
'title': result.get('title', 'No title'),
'snippet': result.get('body', 'No content')
})
seen_urls.add(url)
# Limit to 6 unique web pages
if len(search_results) >= 6:
break
except Exception as e:
print(f"General web search attempt failed: {e}")
return search_results
except Exception as e:
print(f"General web search URL retrieval failed: {e}")
return []
def is_quality_source(url: str) -> bool:
"""Filter out low-quality or problematic sources."""
low_quality_domains = [
'pinterest.com', 'instagram.com', 'facebook.com', 'twitter.com',
'tiktok.com', 'youtube.com', 'reddit.com'
]
for domain in low_quality_domains:
if domain in url.lower():
return False
return True
def has_sufficient_results(results: list) -> bool:
"""Check if search results are sufficient to proceed."""
if not results:
return False
# Check for minimum number of results
if len(results) < 2:
return False
# Check if results have meaningful content
meaningful_results = 0
for result in results:
snippet = result.get('snippet', '')
title = result.get('title', '')
# Consider result meaningful if it has substantial content
if len(snippet) > 50 or len(title) > 10:
meaningful_results += 1
return meaningful_results >= 2
def fetch_and_process_results(results: list, source_type: str) -> list:
"""Fetch and process webpage content from search results."""
documents = []
for result in results[:4]: # Process top 4 results
url = result.get('url', '')
title = result.get('title', 'No title')
print(f"π Fetching content from: {title}")
content = fetch_webpage_content(url)
if content and len(content.strip()) > 100: # Ensure meaningful content
doc = Document(
page_content=content,
metadata={
"source": url,
"title": title,
"source_type": source_type
}
)
documents.append(doc)
return documents
def fetch_webpage_content(url: str) -> str:
"""Fetch and extract clean text content from a webpage."""
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url, headers=headers, timeout=10)
response.raise_for_status()
# Parse HTML and extract text
soup = BeautifulSoup(response.content, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
# Get text content
text = soup.get_text()
# Clean up text
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk)
return text[:30000]
except Exception as e:
print(f"Failed to fetch content from {url}: {e}")
return ""
def search_documents_with_vector_store(documents: list, query: str, source_type: str = "Web") -> str:
"""Create vector store and search for relevant information."""
try:
# Split documents into chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len,
)
splits = text_splitter.split_documents(documents)
if not splits:
return "No content to process after splitting."
# Create embeddings and vector store
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_documents(splits, embeddings)
# Search for relevant chunks with the original query
relevant_docs = vectorstore.similarity_search(query, k=5)
# Format results with source type indication
results = []
results.append(f"π Search Results from {source_type}:\n")
for i, doc in enumerate(relevant_docs, 1):
source = doc.metadata.get('source', 'Unknown source')
title = doc.metadata.get('title', 'No title')
source_type_meta = doc.metadata.get('source_type', source_type)
content = doc.page_content[:2000] # Increased content length
results.append(f"Result {i} ({source_type_meta}) - {title}:\n{content}\nSource: {source}\n")
return "\n---\n".join(results)
except Exception as e:
return f"Vector search failed: {str(e)}"
web_search_tool = Tool(
name="enhanced_web_retrieval",
func=enhanced_web_retrieval_tool_func,
description="Enhanced cascading web search with vector retrieval. First searches Wikipedia for reliable factual information, then falls back to general web search if insufficient results are found. Supports multiple search backends (auto, html, lite, bing) and uses semantic search to find relevant information. Ideal for comprehensive research on any topic."
)
# List of all tools for easy import
agent_tools = [
web_search_tool,
file_download_tool,
image_analysis_tool,
text_processor_tool
]
|