|
from langchain.tools import Tool |
|
import requests |
|
import os |
|
from PIL import Image |
|
import io |
|
import base64 |
|
from ddgs import DDGS |
|
from typing import Optional |
|
import json |
|
import PyPDF2 |
|
import tempfile |
|
import requests |
|
from bs4 import BeautifulSoup |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_openai import OpenAIEmbeddings |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
from langchain.schema import Document |
|
from dotenv import load_dotenv |
|
|
|
|
|
load_dotenv() |
|
|
|
def file_download_tool_func(task_id: str) -> str: |
|
"""Downloads a file associated with a GAIA task ID.""" |
|
try: |
|
api_url = "https://agents-course-unit4-scoring.hf.space" |
|
file_url = f"{api_url}/files/{task_id}" |
|
|
|
response = requests.get(file_url, timeout=30) |
|
response.raise_for_status() |
|
|
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".tmp") as temp_file: |
|
temp_file.write(response.content) |
|
temp_path = temp_file.name |
|
|
|
|
|
content_type = response.headers.get('content-type', '').lower() |
|
|
|
if 'image' in content_type: |
|
return f"Image file downloaded to {temp_path}. Use image_analysis_tool to analyze it." |
|
elif 'pdf' in content_type: |
|
return process_pdf_file(temp_path) |
|
elif 'text' in content_type: |
|
with open(temp_path, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
os.unlink(temp_path) |
|
return f"Text file content:\n{content}" |
|
else: |
|
return f"File downloaded to {temp_path}. Content type: {content_type}" |
|
|
|
except Exception as e: |
|
return f"Failed to download file for task {task_id}: {str(e)}" |
|
|
|
def process_pdf_file(file_path: str) -> str: |
|
"""Process a PDF file and extract text content.""" |
|
try: |
|
with open(file_path, 'rb') as file: |
|
pdf_reader = PyPDF2.PdfReader(file) |
|
text_content = "" |
|
|
|
for page_num in range(len(pdf_reader.pages)): |
|
page = pdf_reader.pages[page_num] |
|
text_content += f"\n--- Page {page_num + 1} ---\n" |
|
text_content += page.extract_text() |
|
|
|
os.unlink(file_path) |
|
return f"PDF content extracted:\n{text_content}" |
|
except Exception as e: |
|
return f"Failed to process PDF: {str(e)}" |
|
|
|
file_download_tool = Tool( |
|
name="file_download", |
|
func=file_download_tool_func, |
|
description="Downloads and processes files associated with GAIA task IDs. Can handle images, PDFs, and text files." |
|
) |
|
|
|
def image_analysis_tool_func(image_path_or_description: str) -> str: |
|
"""Analyzes images for GAIA questions. For now, returns a placeholder.""" |
|
|
|
try: |
|
if os.path.exists(image_path_or_description): |
|
|
|
with Image.open(image_path_or_description) as img: |
|
width, height = img.size |
|
mode = img.mode |
|
format_info = img.format |
|
|
|
|
|
os.unlink(image_path_or_description) |
|
|
|
return f"Image analyzed: {width}x{height} pixels, mode: {mode}, format: {format_info}. Note: This is a basic analysis. For detailed image content analysis, a vision model would be needed." |
|
else: |
|
return f"Image analysis requested for: {image_path_or_description}. Note: Full image analysis requires a vision model integration." |
|
except Exception as e: |
|
return f"Image analysis failed: {str(e)}" |
|
|
|
image_analysis_tool = Tool( |
|
name="image_analysis", |
|
func=image_analysis_tool_func, |
|
description="Analyzes images to extract information. Use this for questions involving visual content." |
|
) |
|
|
|
def text_processor_tool_func(text: str, operation: str = "summarize") -> str: |
|
"""Processes text for various operations like summarization, extraction, etc.""" |
|
try: |
|
if operation == "summarize": |
|
|
|
sentences = text.split('.') |
|
if len(sentences) > 5: |
|
summary = '. '.join(sentences[:2] + sentences[-2:]) |
|
return f"Text summary: {summary}" |
|
else: |
|
return f"Text (short enough to not need summarization): {text}" |
|
|
|
elif operation == "extract_numbers": |
|
import re |
|
numbers = re.findall(r'\d+(?:\.\d+)?', text) |
|
return f"Numbers found in text: {numbers}" |
|
|
|
elif operation == "extract_dates": |
|
import re |
|
|
|
date_patterns = [ |
|
r'\d{1,2}/\d{1,2}/\d{4}', |
|
r'\d{4}-\d{1,2}-\d{1,2}', |
|
r'\b\w+ \d{1,2}, \d{4}\b' |
|
] |
|
dates = [] |
|
for pattern in date_patterns: |
|
dates.extend(re.findall(pattern, text)) |
|
return f"Dates found in text: {dates}" |
|
|
|
else: |
|
return f"Text processing operation '{operation}' not supported. Available: summarize, extract_numbers, extract_dates" |
|
|
|
except Exception as e: |
|
return f"Text processing failed: {str(e)}" |
|
|
|
text_processor_tool = Tool( |
|
name="text_processor", |
|
func=text_processor_tool_func, |
|
description="Processes text for various operations like summarization, number extraction, date extraction. Specify operation as second parameter." |
|
) |
|
|
|
def enhanced_web_retrieval_tool_func(query: str) -> str: |
|
"""Enhanced web search with vector retrieval for deep content analysis.""" |
|
try: |
|
print(f"🔍 Enhanced web retrieval for: {query}") |
|
|
|
|
|
search_results = get_search_urls(query) |
|
if not search_results: |
|
return "No search results found." |
|
|
|
|
|
documents = [] |
|
for result in search_results[:4]: |
|
url = result.get('url', '') |
|
title = result.get('title', 'No title') |
|
|
|
print(f"📄 Fetching content from: {title}") |
|
content = fetch_webpage_content(url) |
|
if content: |
|
doc = Document( |
|
page_content=content, |
|
metadata={"source": url, "title": title} |
|
) |
|
documents.append(doc) |
|
|
|
if not documents: |
|
return "Could not fetch content from any search results." |
|
|
|
|
|
return search_documents_with_vector_store(documents, query) |
|
|
|
except Exception as e: |
|
return f"Enhanced web retrieval failed: {str(e)}" |
|
|
|
def get_search_urls(query: str) -> list: |
|
"""Get search results from English Wikipedia only using DDGS.""" |
|
try: |
|
with DDGS() as ddgs: |
|
|
|
wikipedia_queries = [ |
|
f"site:en.wikipedia.org {query}", |
|
f"{query} site:en.wikipedia.org" |
|
] |
|
|
|
search_results = [] |
|
seen_urls = set() |
|
|
|
for wiki_query in wikipedia_queries: |
|
try: |
|
results = list(ddgs.text(wiki_query, max_results=2)) |
|
|
|
for result in results: |
|
url = result.get('href', '') |
|
|
|
|
|
if 'en.wikipedia.org' in url and url not in seen_urls: |
|
search_results.append({ |
|
'url': url, |
|
'title': result.get('title', 'No title'), |
|
'snippet': result.get('body', 'No content') |
|
}) |
|
seen_urls.add(url) |
|
|
|
|
|
if len(search_results) >= 4: |
|
break |
|
|
|
if len(search_results) >= 4: |
|
break |
|
|
|
except Exception: |
|
continue |
|
|
|
return search_results |
|
|
|
except Exception as e: |
|
print(f"Wikipedia search URL retrieval failed: {e}") |
|
return [] |
|
|
|
def fetch_webpage_content(url: str) -> str: |
|
"""Fetch and extract clean text content from a webpage.""" |
|
try: |
|
headers = { |
|
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' |
|
} |
|
|
|
response = requests.get(url, headers=headers, timeout=10) |
|
response.raise_for_status() |
|
|
|
|
|
soup = BeautifulSoup(response.content, 'html.parser') |
|
|
|
|
|
for script in soup(["script", "style"]): |
|
script.decompose() |
|
|
|
|
|
text = soup.get_text() |
|
|
|
|
|
lines = (line.strip() for line in text.splitlines()) |
|
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) |
|
text = ' '.join(chunk for chunk in chunks if chunk) |
|
|
|
return text[:30000] |
|
|
|
except Exception as e: |
|
print(f"Failed to fetch content from {url}: {e}") |
|
return "" |
|
|
|
def search_documents_with_vector_store(documents: list, query: str) -> str: |
|
"""Create vector store and search for relevant information.""" |
|
try: |
|
|
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=1000, |
|
chunk_overlap=200, |
|
length_function=len, |
|
) |
|
|
|
splits = text_splitter.split_documents(documents) |
|
|
|
if not splits: |
|
return "No content to process after splitting." |
|
|
|
|
|
embeddings = OpenAIEmbeddings() |
|
vectorstore = FAISS.from_documents(splits, embeddings) |
|
|
|
|
|
relevant_docs = vectorstore.similarity_search(query, k=5) |
|
|
|
|
|
results = [] |
|
for i, doc in enumerate(relevant_docs, 1): |
|
source = doc.metadata.get('source', 'Unknown source') |
|
title = doc.metadata.get('title', 'No title') |
|
content = doc.page_content[:5000] |
|
|
|
results.append(f"Result {i} from {title}:\n{content}\nSource: {source}\n") |
|
|
|
return "\n---\n".join(results) |
|
|
|
except Exception as e: |
|
return f"Vector search failed: {str(e)}" |
|
|
|
web_search_tool = Tool( |
|
name="enhanced_web_retrieval", |
|
func=enhanced_web_retrieval_tool_func, |
|
description="Enhanced Wikipedia-only search with vector retrieval. Fetches full content from English Wikipedia pages and uses semantic search to find relevant information. Use this for factual questions that need detailed Wikipedia content analysis." |
|
) |
|
|
|
|
|
agent_tools = [ |
|
web_search_tool, |
|
file_download_tool, |
|
image_analysis_tool, |
|
text_processor_tool |
|
] |
|
|