Denis Davydov
increase limit of text
52ee323
raw
history blame
11.8 kB
from langchain.tools import Tool
import requests
import os
from PIL import Image
import io
import base64
from ddgs import DDGS
from typing import Optional
import json
import PyPDF2
import tempfile
import requests
from bs4 import BeautifulSoup
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.schema import Document
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
def file_download_tool_func(task_id: str) -> str:
"""Downloads a file associated with a GAIA task ID."""
try:
api_url = "https://agents-course-unit4-scoring.hf.space"
file_url = f"{api_url}/files/{task_id}"
response = requests.get(file_url, timeout=30)
response.raise_for_status()
# Save to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".tmp") as temp_file:
temp_file.write(response.content)
temp_path = temp_file.name
# Try to determine file type and process accordingly
content_type = response.headers.get('content-type', '').lower()
if 'image' in content_type:
return f"Image file downloaded to {temp_path}. Use image_analysis_tool to analyze it."
elif 'pdf' in content_type:
return process_pdf_file(temp_path)
elif 'text' in content_type:
with open(temp_path, 'r', encoding='utf-8') as f:
content = f.read()
os.unlink(temp_path) # Clean up
return f"Text file content:\n{content}"
else:
return f"File downloaded to {temp_path}. Content type: {content_type}"
except Exception as e:
return f"Failed to download file for task {task_id}: {str(e)}"
def process_pdf_file(file_path: str) -> str:
"""Process a PDF file and extract text content."""
try:
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
text_content = ""
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text_content += f"\n--- Page {page_num + 1} ---\n"
text_content += page.extract_text()
os.unlink(file_path) # Clean up
return f"PDF content extracted:\n{text_content}"
except Exception as e:
return f"Failed to process PDF: {str(e)}"
file_download_tool = Tool(
name="file_download",
func=file_download_tool_func,
description="Downloads and processes files associated with GAIA task IDs. Can handle images, PDFs, and text files."
)
def image_analysis_tool_func(image_path_or_description: str) -> str:
"""Analyzes images for GAIA questions. For now, returns a placeholder."""
# This is a simplified version - in a full implementation, you'd use a vision model
try:
if os.path.exists(image_path_or_description):
# Try to open and get basic info about the image
with Image.open(image_path_or_description) as img:
width, height = img.size
mode = img.mode
format_info = img.format
# Clean up the temporary file
os.unlink(image_path_or_description)
return f"Image analyzed: {width}x{height} pixels, mode: {mode}, format: {format_info}. Note: This is a basic analysis. For detailed image content analysis, a vision model would be needed."
else:
return f"Image analysis requested for: {image_path_or_description}. Note: Full image analysis requires a vision model integration."
except Exception as e:
return f"Image analysis failed: {str(e)}"
image_analysis_tool = Tool(
name="image_analysis",
func=image_analysis_tool_func,
description="Analyzes images to extract information. Use this for questions involving visual content."
)
def text_processor_tool_func(text: str, operation: str = "summarize") -> str:
"""Processes text for various operations like summarization, extraction, etc."""
try:
if operation == "summarize":
# Simple summarization - take first and last sentences if long
sentences = text.split('.')
if len(sentences) > 5:
summary = '. '.join(sentences[:2] + sentences[-2:])
return f"Text summary: {summary}"
else:
return f"Text (short enough to not need summarization): {text}"
elif operation == "extract_numbers":
import re
numbers = re.findall(r'\d+(?:\.\d+)?', text)
return f"Numbers found in text: {numbers}"
elif operation == "extract_dates":
import re
# Simple date pattern matching
date_patterns = [
r'\d{1,2}/\d{1,2}/\d{4}', # MM/DD/YYYY
r'\d{4}-\d{1,2}-\d{1,2}', # YYYY-MM-DD
r'\b\w+ \d{1,2}, \d{4}\b' # Month DD, YYYY
]
dates = []
for pattern in date_patterns:
dates.extend(re.findall(pattern, text))
return f"Dates found in text: {dates}"
else:
return f"Text processing operation '{operation}' not supported. Available: summarize, extract_numbers, extract_dates"
except Exception as e:
return f"Text processing failed: {str(e)}"
text_processor_tool = Tool(
name="text_processor",
func=text_processor_tool_func,
description="Processes text for various operations like summarization, number extraction, date extraction. Specify operation as second parameter."
)
def enhanced_web_retrieval_tool_func(query: str) -> str:
"""Enhanced web search with vector retrieval for deep content analysis."""
try:
print(f"🔍 Enhanced web retrieval for: {query}")
# Step 1: Get search results with URLs
search_results = get_search_urls(query)
if not search_results:
return "No search results found."
# Step 2: Fetch and process webpage content
documents = []
for result in search_results[:4]: # Top 4 results as requested
url = result.get('url', '')
title = result.get('title', 'No title')
print(f"📄 Fetching content from: {title}")
content = fetch_webpage_content(url)
if content:
doc = Document(
page_content=content,
metadata={"source": url, "title": title}
)
documents.append(doc)
if not documents:
return "Could not fetch content from any search results."
# Step 3: Create vector store and search
return search_documents_with_vector_store(documents, query)
except Exception as e:
return f"Enhanced web retrieval failed: {str(e)}"
def get_search_urls(query: str) -> list:
"""Get search results from English Wikipedia only using DDGS."""
try:
with DDGS() as ddgs:
# Create Wikipedia-specific search queries
wikipedia_queries = [
f"site:en.wikipedia.org {query}",
f"{query} site:en.wikipedia.org"
]
search_results = []
seen_urls = set()
for wiki_query in wikipedia_queries:
try:
results = list(ddgs.text(wiki_query, max_results=2))
for result in results:
url = result.get('href', '')
# Only include Wikipedia URLs and avoid duplicates
if 'en.wikipedia.org' in url and url not in seen_urls:
search_results.append({
'url': url,
'title': result.get('title', 'No title'),
'snippet': result.get('body', 'No content')
})
seen_urls.add(url)
# Limit to 4 unique Wikipedia pages
if len(search_results) >= 4:
break
if len(search_results) >= 4:
break
except Exception:
continue # Try next query
return search_results
except Exception as e:
print(f"Wikipedia search URL retrieval failed: {e}")
return []
def fetch_webpage_content(url: str) -> str:
"""Fetch and extract clean text content from a webpage."""
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url, headers=headers, timeout=10)
response.raise_for_status()
# Parse HTML and extract text
soup = BeautifulSoup(response.content, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
# Get text content
text = soup.get_text()
# Clean up text
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk)
return text[:30000]
except Exception as e:
print(f"Failed to fetch content from {url}: {e}")
return ""
def search_documents_with_vector_store(documents: list, query: str) -> str:
"""Create vector store and search for relevant information."""
try:
# Split documents into chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len,
)
splits = text_splitter.split_documents(documents)
if not splits:
return "No content to process after splitting."
# Create embeddings and vector store
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_documents(splits, embeddings)
# Search for relevant chunks with the original query
relevant_docs = vectorstore.similarity_search(query, k=5)
# Format results
results = []
for i, doc in enumerate(relevant_docs, 1):
source = doc.metadata.get('source', 'Unknown source')
title = doc.metadata.get('title', 'No title')
content = doc.page_content[:5000] # First 500 chars
results.append(f"Result {i} from {title}:\n{content}\nSource: {source}\n")
return "\n---\n".join(results)
except Exception as e:
return f"Vector search failed: {str(e)}"
web_search_tool = Tool(
name="enhanced_web_retrieval",
func=enhanced_web_retrieval_tool_func,
description="Enhanced Wikipedia-only search with vector retrieval. Fetches full content from English Wikipedia pages and uses semantic search to find relevant information. Use this for factual questions that need detailed Wikipedia content analysis."
)
# List of all tools for easy import
agent_tools = [
web_search_tool,
file_download_tool,
image_analysis_tool,
text_processor_tool
]