demo / app.py
ddooling's picture
Create app.py
eca2645 verified
from dotenv import load_dotenv
import os
# Add these imports
from threading import Thread
import queue
from openai import AssistantEventHandler
from typing_extensions import override
load_dotenv()
import openai
import time
import gradio as gr
from autogen import UserProxyAgent, config_list_from_json
from datetime import timedelta, datetime
import pandas as pd
import numpy as np
from gradio_datetimerange import DateTimeRange
import os
from time import sleep
from gradio_pdf import PDF
from pandasai.llm.openai import OpenAI
from pandasai import Agent
import matplotlib.pyplot as plt
import io
from pandasai import SmartDataframe
from collections import Counter
# llmmodel = OpenAI(api_token=os.environ["OPENAI_API_KEY"], model='gpt-4o')
import requests
functions = [
{
"name": "update_weather",
"description": "Fetches and returns the current weather information for a specified location.",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The name of the city or location to get weather information for."
}
},
"required": ["location"]
}
}
]
tools=[
{
"type": "function",
"function": {
"name": "update_weather",
"description": "Fetches and returns the current weather information for a specified location.",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The name of the city or location to get weather information for."
}
},
"required": ["location"]
}
}
}
]
def get_weather(location: str) -> str:
"""
Fetches the weather for a given location and returns a dictionary
Parameters:
- location: the search term to find current weather information
Returns:
The current weather for that location
"""
api_key = os.environ["OPENWEATHERMAP_API_KEY"]
base_url = "http://api.openweathermap.org/data/2.5/weather"
params = {"q": location, "appid": api_key, "units": "imperial"}
response = requests.get(base_url, params=params)
weather_data = response.json()
return weather_data
get_weather_schema = """
{
"name": "get_weather",
"description": "Fetches the weather for a location based on a search term.",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "Name of the city"
}
},
"required": [
"location"
]
}
}
"""
# Function to generate a date range
def generate_date_range(start_date, end_date, freq="D"):
return pd.date_range(start=start_date, end=end_date, freq=freq)
# Function to generate synthetic data for each component
def generate_synthetic_data(dates):
# Define random seed for reproducibility
np.random.seed(0)
# Generate random data for each component
data = {
"Temperature_Pressure_Relief_Valve": np.random.choice(
[0, 1], size=len(dates)
), # 0 = OK, 1 = Faulty
"Outlet_Nipple_Assembly": np.random.normal(
loc=80, scale=10, size=len(dates)
), # Temperature in °F
"Inlet_Nipple": np.random.normal(
loc=50, scale=5, size=len(dates)
), # Temperature in °F
"Upper_Element": np.random.normal(
loc=150, scale=20, size=len(dates)
), # Wattage (Watts)
"Lower_Element": np.random.normal(
loc=150, scale=20, size=len(dates)
), # Wattage (Watts)
"Anode_Rod": np.random.normal(
loc=7, scale=1.5, size=len(dates)
), # Length in inches
"Drain_Valve": np.random.choice(
[0, 1], size=len(dates)
), # 0 = Closed, 1 = Open
"Upper_Thermostat": np.random.normal(
loc=120, scale=10, size=len(dates)
), # Temperature in °F
"Lower_Thermostat": np.random.normal(
loc=120, scale=10, size=len(dates)
), # Temperature in °F
"Operating_Time": np.random.randint(
1, 25, size=len(dates)
), # Operating time in hours
}
# Inject an anomaly in the Upper Thermostat values around the midpoint
midpoint_index = len(dates) // 2
anomaly_range = (midpoint_index - 5, midpoint_index + 5)
# Create a spike in Upper Thermostat values
data["Upper_Thermostat"][anomaly_range[0] : anomaly_range[1]] = np.random.normal(
loc=200, scale=5, size=anomaly_range[1] - anomaly_range[0]
)
return pd.DataFrame(data, index=dates)
# Generate the dataset
start_date = datetime(2023, 10, 1)
end_date = datetime(2024, 10, 1)
dates = generate_date_range(start_date, end_date)
# Create a DataFrame with synthetic data
synthetic_dataset = generate_synthetic_data(dates)
now = datetime.now()
synthetic_dataset["time"] = [
now - timedelta(hours=5 * i) for i in range(synthetic_dataset.shape[0])
]
# something whcky happened with the vector store. i don't know what the fuck happened.
# have to create a new assistant.
# you need to have system instructions ilke this
# You are a helpful assistant and expert at ansewring building automation questions. Always carry out a file search for the desired information. You can augment that information with your general knowledge, but alwasy carry out a file seaach with every query first to see if the relevant information is there, and then add to that afterwards.
# name : Building Energy and Efficiency Expert
# And also added repitiion of the instructions in the thread / run creation.
VECTOR_STORE_ID = os.environ["VECTOR_STORE_ID"] # will need to be updated. what the hell happened??
ASSISTANT_ID = os.environ["ASSISTANT_ID"]
# small medium offices are waht is relevant to this dataset.
# Initialize the client
client = openai.OpenAI()
# Step 2: Create a Thread
thread = client.beta.threads.create()
thread_id = thread.id
# Define the EventHandler class
class EventHandler(AssistantEventHandler):
def __init__(self, response_queue):
super().__init__()
self.response_queue = response_queue
# @override
# def on_event(self, event):
# # Retrieve events that are denoted with 'requires_action'
# # since these will have our tool_calls
# if event.event == 'thread.run.requires_action':
# run_id = event.data.id # Retrieve the run ID from the event data
# self.handle_requires_action(event.data, run_id)
# def handle_requires_action(self, data, run_id):
# tool_outputs = []
# for tool in data.required_action.submit_tool_outputs.tool_calls:
# if tool.function.name == "update_weather":
# tool_outputs.append({"tool_call_id": tool.id, "output": "57"})
# Submit all tool_outputs at the same time
# self.submit_tool_outputs(tool_outputs, run_id)
# def submit_tool_outputs(self, tool_outputs, run_id):
# # Use the submit_tool_outputs_stream helper
# with client.beta.threads.runs.submit_tool_outputs_stream(
# thread_id=self.current_run.thread_id,
# run_id=self.current_run.id,
# tool_outputs=tool_outputs,
# event_handler=EventHandler(),
# ) as stream:
# for text in stream.text_deltas:
# print(text, end="", flush=True)
# print()
@override
def on_text_created(self, text) -> None:
pass
@override
def on_text_delta(self, delta, snapshot):
text = delta.value
self.response_queue.put(text)
def chat(usr_message, history):
global thread_id
# start_conversation()
user_input = usr_message
if not thread_id:
print("Error: Missing thread_id") # Debugging line
return json.dumps({"error": "Missing thread_id"}), 400
print(
f"Received message: {user_input} for thread ID: {thread_id}"
) # Debugging line
# Add the user's message to the thread
client.beta.threads.messages.create(
thread_id=thread_id, role="user", content=user_input
)
# Create a queue to hold the assistant's response chunks
response_queue = queue.Queue()
# Instantiate the event handler with the queue
event_handler = EventHandler(response_queue)
# Start the streaming run in a separate thread
def run_stream():
with client.beta.threads.runs.stream(
thread_id=thread_id,
assistant_id=ASSISTANT_ID,
# parallel_tool_calls = False,
tool_choice = "required",
# functions=functions,
# function_call="auto",
# tools=[
# {
# "type": "function",
# "function": {
# "name": "update_weather",
# "description": "Fetches and returns the current weather information for a specified location.",
# "parameters": {
# "type": "object",
# "properties": {
# "location": {
# "type": "string",
# "description": "The name of the city or location to get weather information for."
# }
# },
# "required": ["location"]
# }
# }
# }
# ],
# tool_choice = {"type": "file_search"},
# tools = [{"type": "file_search"}],
# tool_resources={"file_search": {"vector_store_ids": [VECTOR_STORE_ID]}},
# additional_instructions="Always carry out a file search for the desired information",
event_handler=event_handler,
) as stream:
stream.until_done()
stream_thread = Thread(target=run_stream)
stream_thread.start()
assistant_response = ""
while True:
try:
# Get response chunks from the queue
chunk = response_queue.get(timeout=0.1)
assistant_response += chunk
yield assistant_response
except queue.Empty:
# Check if the stream has finished
if not stream_thread.is_alive():
break
# Wait for the stream thread to finish
stream_thread.join()
#def update_weather(location):
# api_key = os.environ["OPENWEATHERMAP_API_KEY"]
# base_url = "http://api.openweathermap.org/data/2.5/weather"
# params = {"q": location, "appid": api_key, "units": "metric"}
# response = requests.get(base_url, params=params)
# weather_data = response.json()
# {'coord': {'lon': -106.6645, 'lat': 35.2334}, 'weather': [{'id': 800, 'main': 'Clear', 'description': 'clear sky', 'icon': '01d'}], 'base': 'stations', 'main': {'temp': 21.79, 'feels_like': 20.89, 'temp_min': 20.06, 'temp_max': 23.22, 'pressure': 1024, 'humidity': 33, 'sea_level': 1024, 'grnd_level': 836}, 'visibility': 10000, 'wind': {'speed': 9.26, 'deg': 140}, 'clouds': {'all': 0}, 'dt': 1727798647, 'sys': {'type': 2, 'id': 2080227, 'country': 'US', 'sunrise': 1727787706, 'sunset': 1727830218}, 'timezone': -21600, 'id': 5487811, 'name': 'Rio Rancho', 'cod': 200}
# lon = weather_data["coord"]["lon"]
# lat = weather_data["coord"]["lat"]
# main = weather_data["weather"][0]["main"]
# feels_like = weather_data["main"]["feels_like"]
# temp_min = weather_data["main"]["temp_min"]
# temp_max = weather_data["main"]["temp_max"]
# pressure = weather_data["main"]["pressure"]
# visibility = weather_data["visibility"]
# wind_speed = weather_data["wind"]["speed"]
# wind_deg = weather_data["wind"]["deg"]
# sunrise = weather_data["sys"]["sunrise"]
# sunset = weather_data["sys"]["sunset"]
# temp = weather_data["main"]["temp"]
# humidity = weather_data["main"]["humidity"]
# condition = weather_data["weather"][0]["description"]
# return f"""Weather in {location}:
# (lon: {lon}, lat: {lat}),
# Temperature: {temp:.2f}°C, Feels like: {feels_like:.2f}°C,
# Temperature_min: {temp_min:.2f}°C, Temperature_max: {temp_max:.2f}°C,
# Humidity: {humidity}, Condition: {condition},
# Pressure: {pressure}, Visibility: {visibility}, Wind speed: {wind_speed},
# Wind deg: {wind_deg}, Sunrise: {sunrise}, Sunset: {sunset}"""
# Function to update weather information
def update_weather(location):
api_key = os.environ["OPENWEATHERMAP_API_KEY"]
base_url = "http://api.openweathermap.org/data/2.5/weather"
params = {"q": location, "appid": api_key, "units": "imperial"}
response = requests.get(base_url, params=params)
weather_data = response.json()
if response.status_code != 200:
return f"Error fetching weather data: {weather_data.get('message', 'Unknown error')}"
lon = weather_data["coord"]["lon"]
lat = weather_data["coord"]["lat"]
main = weather_data["weather"][0]["main"]
feels_like = weather_data["main"]["feels_like"]
temp_min = weather_data["main"]["temp_min"]
temp_max = weather_data["main"]["temp_max"]
pressure = weather_data["main"]["pressure"]
visibility = weather_data["visibility"]
wind_speed = weather_data["wind"]["speed"]
wind_deg = weather_data["wind"]["deg"]
sunrise = datetime.fromtimestamp(weather_data["sys"]["sunrise"]).strftime('%H:%M:%S')
sunset = datetime.fromtimestamp(weather_data["sys"]["sunset"]).strftime('%H:%M:%S')
temp = weather_data["main"]["temp"]
humidity = weather_data["main"]["humidity"]
condition = weather_data["weather"][0]["description"]
return f"""**Weather in {location}:**
- **Coordinates:** (lon: {lon}, lat: {lat})
- **Temperature:** {temp:.2f}°F (Feels like: {feels_like:.2f}°F)
- **Min Temperature:** {temp_min:.2f}°F, **Max Temperature:** {temp_max:.2f}°F
- **Humidity:** {humidity}%
- **Condition:** {condition.capitalize()}
- **Pressure:** {pressure} hPa
- **Visibility:** {visibility} meters
- **Wind Speed:** {wind_speed} m/s, **Wind Direction:** {wind_deg}°
- **Sunrise:** {sunrise}, **Sunset:** {sunset}"""
def update_weather_forecast(location: str) -> str:
""" Fetches the weather forecast for a given location and returns a formatted string
Parameters:
- location: the search term to find weather information
Returns:
A formatted string containing the weather forecast data
"""
api_key = os.environ["OPENWEATHERMAP_API_KEY"]
base_url = "http://api.openweathermap.org/data/2.5/forecast"
params = {
"q": location,
"appid": api_key,
"units": "imperial",
"cnt": 40 # Request 40 data points (5 days * 8 three-hour periods)
}
response = requests.get(base_url, params=params)
weather_data = response.json()
if response.status_code != 200:
return f"Error fetching weather data: {weather_data.get('message', 'Unknown error')}"
# Organize forecast data per date
forecast_data = {}
for item in weather_data['list']:
dt_txt = item['dt_txt'] # 'YYYY-MM-DD HH:MM:SS'
date_str = dt_txt.split(' ')[0] # 'YYYY-MM-DD'
time_str = dt_txt.split(' ')[1] # 'HH:MM:SS'
forecast_data.setdefault(date_str, [])
forecast_data[date_str].append({
'time': time_str,
'temp': item['main']['temp'],
'feels_like': item['main']['feels_like'],
'humidity': item['main']['humidity'],
'pressure': item['main']['pressure'],
'wind_speed': item['wind']['speed'],
'wind_deg': item['wind']['deg'],
'condition': item['weather'][0]['description'],
'visibility': item.get('visibility', 'N/A'), # sometimes visibility may be missing
})
# Process data to create daily summaries
daily_summaries = {}
for date_str, forecasts in forecast_data.items():
temps = [f['temp'] for f in forecasts]
feels_likes = [f['feels_like'] for f in forecasts]
humidities = [f['humidity'] for f in forecasts]
pressures = [f['pressure'] for f in forecasts]
wind_speeds = [f['wind_speed'] for f in forecasts]
conditions = [f['condition'] for f in forecasts]
min_temp = min(temps)
max_temp = max(temps)
avg_temp = sum(temps) / len(temps)
avg_feels_like = sum(feels_likes) / len(feels_likes)
avg_humidity = sum(humidities) / len(humidities)
avg_pressure = sum(pressures) / len(pressures)
avg_wind_speed = sum(wind_speeds) / len(wind_speeds)
# Find the most common weather condition
condition_counts = Counter(conditions)
most_common_condition = condition_counts.most_common(1)[0][0]
daily_summaries[date_str] = {
'min_temp': min_temp,
'max_temp': max_temp,
'avg_temp': avg_temp,
'avg_feels_like': avg_feels_like,
'avg_humidity': avg_humidity,
'avg_pressure': avg_pressure,
'avg_wind_speed': avg_wind_speed,
'condition': most_common_condition,
}
# Build the formatted string
city_name = weather_data['city']['name']
ret_str = f"**5-Day Weather Forecast for {city_name}:**\n"
for date_str in sorted(daily_summaries.keys()):
summary = daily_summaries[date_str]
ret_str += f"\n**{date_str}:**\n"
ret_str += f"- **Condition:** {summary['condition'].capitalize()}\n"
ret_str += f"- **Min Temperature:** {summary['min_temp']:.2f}°F\n"
ret_str += f"- **Max Temperature:** {summary['max_temp']:.2f}°F\n"
ret_str += f"- **Average Temperature:** {summary['avg_temp']:.2f}°F (Feels like {summary['avg_feels_like']:.2f}°F)\n"
ret_str += f"- **Humidity:** {summary['avg_humidity']:.0f}%\n"
ret_str += f"- **Pressure:** {summary['avg_pressure']:.0f} hPa\n"
ret_str += f"- **Wind Speed:** {summary['avg_wind_speed']:.2f} m/s\n"
return ret_str
llmmodel = OpenAI(api_token=os.environ["OPENAI_API_KEY"], model='gpt-4o')
# Load dataframes
dfcleaned = pd.read_csv("dfcleaned.csv")
dfcleaned['Timestamp'] = pd.to_datetime(dfcleaned['Timestamp'])
dfcleaned['off-nominal'] = dfcleaned['off-nominal'].apply(str)
dfshaps = pd.read_csv("shaps.csv")
dfshaps['Timestamp'] = pd.to_datetime(dfshaps['Timestamp'])
# Initialize Agent
agent = Agent([dfcleaned, dfshaps], config={"llm": llmmodel})
sdfshaps = SmartDataframe(dfshaps, config={"llm": llmmodel})
sdfcleaned = SmartDataframe(dfcleaned, config={"llm": llmmodel})
#def process_query(query):
# response = agent.chat(query) # or agent chat, gr.Image
# print(response)
# if isinstance(response, str) and ".png" in response:
# return response, response, None
# elif isinstance(response, str) and ".png" not in response:
# return response, None, None
# elif isinstance(response, pd.DataFrame):
# return None, None, response
def process_query(query):
response = agent.chat(query) # Replace with your actual agent chat implementation
print(response)
# Initialize outputs and visibility flags
text_output = None
image_output = None
dataframe_output = None
text_visible = False
image_visible = False
dataframe_visible = False
if isinstance(response, str) and ".png" not in response:
text_output = response
text_visible = True
elif isinstance(response, str) and ".png" in response:
image_output = response # Assuming response is a filepath or URL to the image
image_visible = True
elif isinstance(response, pd.DataFrame):
dataframe_output = response
dataframe_visible = True
return (
text_output,
image_output,
dataframe_output,
gr.update(visible=text_visible),
gr.update(visible=image_visible),
gr.update(visible=dataframe_visible)
)
def gradio_app():
iface = gr.Interface(
fn=process_query,
inputs="text",
outputs=[
gr.Textbox(label="Response"),
gr.Image(label="Plot"),
gr.DataFrame(label="Dataframe")
],
title="pandasai Query Processor",
description="Enter your query related to the csv data files."
)
return iface
with gr.Blocks(
# theme=gr.themes.Monochrome(primary_hue="green"),
theme = gr.themes.Soft(),
) as demo:
with gr.Row(): # Combine the two weather functions into a single row
with gr.Column():
location1 = gr.Textbox(label="Enter location for weather (e.g., Rio Rancho, New Mexico)",
value="Cambridge, Massachusetts")
weather_button = gr.Button("Get Weather")
# output1 = gr.Markdown(label="Weather Information")
output1 = gr.Textbox(label="Weather Information", lines=8, max_lines=8, show_label=True, show_copy_button=True)
weather_button.click(
fn=update_weather,
inputs=location1,
outputs=output1,
api_name="update_weather",
)
with gr.Column():
location2 = gr.Textbox(label="Enter location for weather forecast (e.g., Rio Rancho, New Mexico)",
value="Cambridge, Massachusetts")
weather_forecast_button = gr.Button("Get 5-Day Weather Forecast")
# output2 = gr.Markdown(label="Weather Forecast Information")
output2 = gr.Textbox(label="Weather 5-Day Forecast Information", lines=8, max_lines=8,
show_label=True, show_copy_button=True)
weather_forecast_button.click(
fn=update_weather_forecast,
inputs=location2,
outputs=output2,
api_name="update_weather_forecast",
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("# Building Automation Assistant")
gr.Markdown(
"I'm an AI assistant that can help with building maintenance and equipment questions."
)
gr.Markdown("---")
# Update the ChatInterface to handle streaming
chat_interface = gr.ChatInterface(
chat,
#show_label=True,
# show_copy_button=True,
chatbot=gr.Chatbot(height=750, show_copy_button=True, show_copy_all_button=True,
avatar_images=("user_avatar.png", "assistant_avatar.png")),
title="Ask Me Anything",
examples_per_page= 5,
# theme="soft", # glass
description="Type your question about building automation here.",
examples=[
"Tell me about the HouseZero dataset. Retrieve information from the publication you have access to. Use your file retrieval tool.",
"Describe in detail the relationshp between the columns in the two uploaded CSV files and the information you have access to regarding the HouseZero dataset. Be verbose. Use your file retrieval tool.",
"Tell be in great detail any advice you have to maintain a small to midsize office building, like the HouseZero data corresponds to. Be verbose. Use your file retrieval tool.",
"please caculate the correlation of each feature with the anomaly_score and retuen the values in descending order. return the top 10 rows.",
"Tell me in great detail any advice you have for the building managers of large hospitals. Be verbose. Use your file retrieval tool.",
"Show massachusetts electricity billing rates during the same time span as the CSV data",
"Use those rates and the relevant columns in the CSV files to estimate how much it costs to operate this building per month.",
"What is the estimated average electricity cost for operating the building using massachusetts energy rates. use your file retrieval tool. use data csv files for building data. Limit your response to 140 characters. Use your file retrieval tool.",
"The anomaly_score field on one of the CSVs indicates that that row is an anomaly if it has value greater than zero.. can you please list a few of the rows with the highest value for this column and using your building efficiency knowledge explain why they may represent a problem? Use your file retrieval tool.",
"Based on the data in these CSV files, can you assign an EnergyIQ score from 1-10 that reflects how well the building is operating? Explain the reason for your score and provide any recommendations on actions to take that can improve it in the future. Be verbose. Use your file retrieval tool.",
"What would be a good feature to plot as a function of time to illustrate the problems of why the EnergyIQ score is low? Use your file retreival tool.",
],
fill_height=True,
)
gr.Markdown("---")
with gr.Column():
# with gr.Column():
# Define the three ScatterPlot components
anomaly_plot = gr.ScatterPlot(
dfcleaned,
x="Timestamp",
y="Z5_RH",
color="off-nominal",
title="Anomaly Score"
)
zone3_plot = gr.ScatterPlot(
dfcleaned,
x="Timestamp",
y="Z3_RH",
color="off-nominal",
title="Zone 3 Relative Humidity",
)
zone4_plot = gr.ScatterPlot(
dfcleaned,
x="Timestamp",
y="Z4_RH",
color="off-nominal",
title="Zone 4 Relative Humidity",
)
# Group all plots into a list for easy management
plots = [anomaly_plot, zone3_plot, zone4_plot]
def select_region(selection: gr.SelectData):
"""
Handles the region selection event.
Args:
selection (gr.SelectData): The data from the selection event.
Returns:
List[gr.Plot.update]: A list of update instructions for each plot.
"""
if selection is None or selection.index is None:
return [gr.Plot.update() for _ in plots]
min_x, max_x = selection.index
# Update the x_lim for each plot
return [gr.ScatterPlot(x_lim=(min_x, max_x)) for _ in plots]
def reset_region():
"""
Resets the x-axis limits for all plots.
Returns:
List[gr.Plot.update]: A list of update instructions to reset x_lim.
"""
return [gr.ScatterPlot(x_lim=None) for _ in plots]
# Attach event listeners to each plot
for plot in plots:
plot.select(
select_region,
inputs=None,
outputs=plots # Update all plots
)
plot.double_click(
reset_region,
inputs=None,
outputs=plots # Reset all plots
)
# plots = [plt, first_plot, second_plot]
# def select_region(selection: gr.SelectData):
# min_w, max_w = selection.index
# return gr.ScatterPlot(x_lim=(min_w, max_w))
# for p in plots:
# p.select(select_region, None, plots)
# p.double_click(lambda: [gr.LinePlot(x_lim=None)] * len(plots), None, plots)
# second_plot.select(select_second_region, None, plt)
# second_plot.double_click(lambda: gr.ScatterPlot(x_lim=None), None, plt)
# gr.Column([anomaly_plot, first_plot, second_plot])
# anomaly_info = gr.Markdown("Anomaly detected around October 15, 2023")
with gr.Column():
query = gr.Textbox(label="Enter your question about the data",
value="Plot the anomaly_score as a function of time and highlight the highest 20 values")
query_button = gr.Button("Submit Data Query")
with gr.Row():
with gr.Column(visible=False) as output_col1:
out1 = gr.Textbox(label="Response")
with gr.Column(visible=False) as output_col2:
out2 = gr.Image(label="Plot")
with gr.Column(visible=False) as output_col3:
out3 = gr.DataFrame(label="DataFrame")
query_button.click(
fn=process_query,
inputs=query,
outputs=[
out1, # Text output
out2, # Image output
out3, # DataFrame output
output_col1, # Visibility for Text output
output_col2, # Visibility for Image output
output_col3 # Visibility for DataFrame output
],
api_name="process_query"
)
# hide visibility until its ready
# Weather input
# with gr.Row():
# iface = gradio_app()
demo.launch(share=False)