Embeddings / app.py
de-Rodrigo's picture
Upload Two Pretrained Datasets (IDL and PDFA)
1af1b88
raw
history blame
32.4 kB
import streamlit as st
import pandas as pd
import numpy as np
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource, DataTable, TableColumn, CustomJS, Select, Button, HoverTool
from bokeh.layouts import column
from bokeh.palettes import Reds9, Blues9, Oranges9, Purples9, Greys9, BuGn9, Greens9
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE, trustworthiness
from sklearn.metrics import pairwise_distances
import io
import ot
from sklearn.linear_model import LinearRegression
N_COMPONENTS = 2
TSNE_NEIGHBOURS = 150
TOOLTIPS = """
<div>
<div>
<img src="@img{safe}" style="width:128px; height:auto; float: left; margin: 0px 15px 15px 0px;" alt="@img" border="2"></img>
</div>
<div>
<span style="font-size: 17px; font-weight: bold;">@label</span>
</div>
</div>
"""
def config_style():
st.markdown("""
<style>
.main-title { font-size: 50px; color: #4CAF50; text-align: center; }
.sub-title { font-size: 30px; color: #555; }
.custom-text { font-size: 18px; line-height: 1.5; }
.bk-legend {
max-height: 200px;
overflow-y: auto;
}
</style>
""", unsafe_allow_html=True)
st.markdown('<h1 class="main-title">Merit Embeddings 🎒📃🏆</h1>', unsafe_allow_html=True)
def load_embeddings(model, version, embedding_prefix):
if model == "Donut":
df_real = pd.read_csv(f"data/donut_{version}_de_Rodrigo_merit_secret_all_embeddings.csv")
df_par = pd.read_csv(f"data/donut_{version}_de_Rodrigo_merit_es-digital-paragraph-degradation-seq_{embedding_prefix}embeddings.csv")
df_line = pd.read_csv(f"data/donut_{version}_de_Rodrigo_merit_es-digital-line-degradation-seq_{embedding_prefix}embeddings.csv")
df_seq = pd.read_csv(f"data/donut_{version}_de_Rodrigo_merit_es-digital-seq_{embedding_prefix}embeddings.csv")
df_rot = pd.read_csv(f"data/donut_{version}_de_Rodrigo_merit_es-digital-rotation-degradation-seq_{embedding_prefix}embeddings.csv")
df_zoom = pd.read_csv(f"data/donut_{version}_de_Rodrigo_merit_es-digital-zoom-degradation-seq_{embedding_prefix}embeddings.csv")
df_render = pd.read_csv(f"data/donut_{version}_de_Rodrigo_merit_es-render-seq_{embedding_prefix}embeddings.csv")
df_pretratrained = pd.read_csv(f"data/donut_{version}_de_Rodrigo_merit_aux_IIT-CDIP_{embedding_prefix}embeddings.csv")
# Asignar etiquetas de versión
df_real["version"] = "real"
df_par["version"] = "synthetic"
df_line["version"] = "synthetic"
df_seq["version"] = "synthetic"
df_rot["version"] = "synthetic"
df_zoom["version"] = "synthetic"
df_render["version"] = "synthetic"
df_pretratrained["version"] = "pretrained"
# Asignar fuente (source)
df_par["source"] = "es-digital-paragraph-degradation-seq"
df_line["source"] = "es-digital-line-degradation-seq"
df_seq["source"] = "es-digital-seq"
df_rot["source"] = "es-digital-rotation-degradation-seq"
df_zoom["source"] = "es-digital-zoom-degradation-seq"
df_render["source"] = "es-render-seq"
df_pretratrained["source"] = "pretrained"
return {"real": df_real,
"synthetic": pd.concat([df_seq, df_line, df_par, df_rot, df_zoom, df_render], ignore_index=True),
"pretrained": df_pretratrained}
elif model == "Idefics2":
df_real = pd.read_csv(f"data/idefics2_{version}_de_Rodrigo_merit_secret_britanico_{embedding_prefix}embeddings.csv")
df_par = pd.read_csv(f"data/idefics2_{version}_de_Rodrigo_merit_es-digital-paragraph-degradation-seq_{embedding_prefix}embeddings.csv")
df_line = pd.read_csv(f"data/idefics2_{version}_de_Rodrigo_merit_es-digital-line-degradation-seq_{embedding_prefix}embeddings.csv")
df_seq = pd.read_csv(f"data/idefics2_{version}_de_Rodrigo_merit_es-digital-seq_{embedding_prefix}embeddings.csv")
df_rot = pd.read_csv(f"data/idefics2_{version}_de_Rodrigo_merit_es-digital-rotation-degradation-seq_{embedding_prefix}embeddings.csv")
df_zoom = pd.read_csv(f"data/idefics2_{version}_de_Rodrigo_merit_es-digital-zoom-degradation-seq_{embedding_prefix}embeddings.csv")
df_render = pd.read_csv(f"data/idefics2_{version}_de_Rodrigo_merit_es-render-seq_{embedding_prefix}embeddings.csv")
# Cargar ambos subconjuntos pretrained y combinarlos
df_pretratrained_PDFA = pd.read_csv(f"data/idefics2_{version}_de_Rodrigo_merit_aux_PDFA_{embedding_prefix}embeddings.csv")
df_pretratrained_IDL = pd.read_csv(f"data/idefics2_{version}_de_Rodrigo_merit_aux_IDL_{embedding_prefix}embeddings.csv")
df_pretratrained = pd.concat([df_pretratrained_PDFA, df_pretratrained_IDL], ignore_index=True)
# Asignar etiquetas de versión
df_real["version"] = "real"
df_par["version"] = "synthetic"
df_line["version"] = "synthetic"
df_seq["version"] = "synthetic"
df_rot["version"] = "synthetic"
df_zoom["version"] = "synthetic"
df_render["version"] = "synthetic"
df_pretratrained["version"] = "pretrained"
# Asignar fuente (source)
df_par["source"] = "es-digital-paragraph-degradation-seq"
df_line["source"] = "es-digital-line-degradation-seq"
df_seq["source"] = "es-digital-seq"
df_rot["source"] = "es-digital-rotation-degradation-seq"
df_zoom["source"] = "es-digital-zoom-degradation-seq"
df_render["source"] = "es-render-seq"
df_pretratrained["source"] = "pretrained"
return {"real": df_real,
"synthetic": pd.concat([df_seq, df_line, df_par, df_rot, df_zoom, df_render], ignore_index=True),
"pretrained": df_pretratrained}
else:
st.error("Modelo no reconocido")
return None
def split_versions(df_combined, reduced):
# Asignar las coordenadas si la reducción es 2D
if reduced.shape[1] == 2:
df_combined['x'] = reduced[:, 0]
df_combined['y'] = reduced[:, 1]
df_real = df_combined[df_combined["version"] == "real"].copy()
df_synth = df_combined[df_combined["version"] == "synthetic"].copy()
df_pretrained = df_combined[df_combined["version"] == "pretrained"].copy()
unique_real = sorted(df_real['label'].unique().tolist())
unique_synth = {}
for source in df_synth["source"].unique():
unique_synth[source] = sorted(df_synth[df_synth["source"] == source]['label'].unique().tolist())
unique_pretrained = sorted(df_pretrained['label'].unique().tolist())
df_dict = {"real": df_real, "synthetic": df_synth, "pretrained": df_pretrained}
unique_subsets = {"real": unique_real, "synthetic": unique_synth, "pretrained": unique_pretrained}
return df_dict, unique_subsets
def get_embedding_from_df(df):
# Retorna el embedding completo (4 dimensiones en este caso) guardado en la columna 'embedding'
if 'embedding' in df.columns:
return np.stack(df['embedding'].to_numpy())
elif 'x' in df.columns and 'y' in df.columns:
return df[['x', 'y']].values
else:
raise ValueError("No se encontró embedding o coordenadas x,y en el DataFrame.")
def compute_cluster_distance(synthetic_points, real_points, metric="wasserstein", bins=20):
if metric.lower() == "wasserstein":
n = synthetic_points.shape[0]
m = real_points.shape[0]
weights = np.ones(n) / n
weights_real = np.ones(m) / m
M = ot.dist(synthetic_points, real_points, metric='euclidean')
return ot.emd2(weights, weights_real, M)
elif metric.lower() == "euclidean":
center_syn = np.mean(synthetic_points, axis=0)
center_real = np.mean(real_points, axis=0)
return np.linalg.norm(center_syn - center_real)
elif metric.lower() == "kl":
# Para KL usamos histogramas multidimensionales con límites globales en cada dimensión
all_points = np.vstack([synthetic_points, real_points])
edges = [
np.linspace(np.min(all_points[:, i]), np.max(all_points[:, i]), bins+1)
for i in range(all_points.shape[1])
]
H_syn, _ = np.histogramdd(synthetic_points, bins=edges)
H_real, _ = np.histogramdd(real_points, bins=edges)
eps = 1e-10
P = H_syn + eps
Q = H_real + eps
P = P / P.sum()
Q = Q / Q.sum()
kl = np.sum(P * np.log(P / Q))
return kl
else:
raise ValueError("Métrica desconocida. Usa 'wasserstein', 'euclidean' o 'kl'.")
def compute_cluster_distances_synthetic_individual(synthetic_df: pd.DataFrame, df_real: pd.DataFrame, real_labels: list, metric="wasserstein", bins=20) -> pd.DataFrame:
distances = {}
groups = synthetic_df.groupby(['source', 'label'])
for (source, label), group in groups:
key = f"{label} ({source})"
data = get_embedding_from_df(group)
distances[key] = {}
for real_label in real_labels:
real_data = get_embedding_from_df(df_real[df_real['label'] == real_label])
d = compute_cluster_distance(data, real_data, metric=metric, bins=bins)
distances[key][real_label] = d
for source, group in synthetic_df.groupby('source'):
key = f"Global ({source})"
data = get_embedding_from_df(group)
distances[key] = {}
for real_label in real_labels:
real_data = get_embedding_from_df(df_real[df_real['label'] == real_label])
d = compute_cluster_distance(data, real_data, metric=metric, bins=bins)
distances[key][real_label] = d
return pd.DataFrame(distances).T
def compute_continuity(X, X_embedded, n_neighbors=5):
n = X.shape[0]
D_high = pairwise_distances(X, metric='euclidean')
D_low = pairwise_distances(X_embedded, metric='euclidean')
indices_high = np.argsort(D_high, axis=1)
indices_low = np.argsort(D_low, axis=1)
k_high = indices_high[:, 1:n_neighbors+1]
k_low = indices_low[:, 1:n_neighbors+1]
total = 0.0
for i in range(n):
set_high = set(k_high[i])
set_low = set(k_low[i])
missing = set_high - set_low
for j in missing:
rank = np.where(indices_low[i] == j)[0][0]
total += (rank - n_neighbors)
norm = 2.0 / (n * n_neighbors * (2*n - 3*n_neighbors - 1))
continuity_value = 1 - norm * total
return continuity_value
def create_table(df_distances):
df_table = df_distances.copy()
df_table.reset_index(inplace=True)
df_table.rename(columns={'index': 'Synthetic'}, inplace=True)
min_row = {"Synthetic": "Min."}
mean_row = {"Synthetic": "Mean"}
max_row = {"Synthetic": "Max."}
for col in df_table.columns:
if col != "Synthetic":
min_row[col] = df_table[col].min()
mean_row[col] = df_table[col].mean()
max_row[col] = df_table[col].max()
df_table = pd.concat([df_table, pd.DataFrame([min_row, mean_row, max_row])], ignore_index=True)
source_table = ColumnDataSource(df_table)
columns = [TableColumn(field='Synthetic', title='Synthetic')]
for col in df_table.columns:
if col != 'Synthetic':
columns.append(TableColumn(field=col, title=col))
total_height = 30 + len(df_table)*28
data_table = DataTable(source=source_table, columns=columns, sizing_mode='stretch_width', height=total_height)
return data_table, df_table, source_table
def create_figure(dfs, unique_subsets, color_maps, model_name):
# Se crea el plot para el embedding reducido (asumiendo que es 2D)
fig = figure(width=600, height=600, tools="wheel_zoom,pan,reset,save", active_scroll="wheel_zoom", tooltips=TOOLTIPS, title="")
# Renderizar datos reales
real_renderers = add_dataset_to_fig(fig, dfs["real"], unique_subsets["real"],
marker="circle", color_mapping=color_maps["real"],
group_label="Real")
# Renderizar datos sintéticos (por fuente)
marker_mapping = {
"es-digital-paragraph-degradation-seq": "x",
"es-digital-line-degradation-seq": "cross",
"es-digital-seq": "triangle",
"es-digital-rotation-degradation-seq": "diamond",
"es-digital-zoom-degradation-seq": "asterisk",
"es-render-seq": "inverted_triangle"
}
synthetic_renderers = {}
synth_df = dfs["synthetic"]
for source in unique_subsets["synthetic"]:
df_source = synth_df[synth_df["source"] == source]
marker = marker_mapping.get(source, "square")
renderers = add_synthetic_dataset_to_fig(fig, df_source, unique_subsets["synthetic"][source],
marker=marker,
color_mapping=color_maps["synthetic"][source],
group_label=source)
synthetic_renderers.update(renderers)
# Agregar el subset pretrained (se puede usar un marcador distinto, por ejemplo, "triangle")
pretrained_renderers = add_dataset_to_fig(fig, dfs["pretrained"], unique_subsets["pretrained"],
marker="triangle", color_mapping=color_maps["pretrained"],
group_label="Pretrained")
fig.legend.location = "top_right"
fig.legend.click_policy = "hide"
show_legend = st.checkbox("Show Legend", value=False, key=f"legend_{model_name}")
fig.legend.visible = show_legend
return fig, real_renderers, synthetic_renderers, pretrained_renderers
def add_dataset_to_fig(fig, df, selected_labels, marker, color_mapping, group_label):
renderers = {}
for label in selected_labels:
subset = df[df['label'] == label]
if subset.empty:
continue
source = ColumnDataSource(data=dict(
x=subset['x'],
y=subset['y'],
label=subset['label'],
img=subset.get('img', "")
))
color = color_mapping[label]
legend_label = f"{label} ({group_label})"
if marker == "circle":
r = fig.circle('x', 'y', size=10, source=source,
fill_color=color, line_color=color,
legend_label=legend_label)
elif marker == "square":
r = fig.square('x', 'y', size=10, source=source,
fill_color=color, line_color=color,
legend_label=legend_label)
elif marker == "triangle":
r = fig.triangle('x', 'y', size=12, source=source,
fill_color=color, line_color=color,
legend_label=legend_label)
renderers[label + f" ({group_label})"] = r
return renderers
def add_synthetic_dataset_to_fig(fig, df, labels, marker, color_mapping, group_label):
renderers = {}
for label in labels:
subset = df[df['label'] == label]
if subset.empty:
continue
source_obj = ColumnDataSource(data=dict(
x=subset['x'],
y=subset['y'],
label=subset['label'],
img=subset.get('img', "")
))
color = color_mapping[label]
legend_label = group_label
if marker == "square":
r = fig.square('x', 'y', size=10, source=source_obj,
fill_color=color, line_color=color,
legend_label=legend_label)
elif marker == "triangle":
r = fig.triangle('x', 'y', size=12, source=source_obj,
fill_color=color, line_color=color,
legend_label=legend_label)
elif marker == "inverted_triangle":
r = fig.inverted_triangle('x', 'y', size=12, source=source_obj,
fill_color=color, line_color=color,
legend_label=legend_label)
elif marker == "diamond":
r = fig.diamond('x', 'y', size=10, source=source_obj,
fill_color=color, line_color=color,
legend_label=legend_label)
elif marker == "cross":
r = fig.cross('x', 'y', size=12, source=source_obj,
fill_color=color, line_color=color,
legend_label=legend_label)
elif marker == "x":
r = fig.x('x', 'y', size=12, source=source_obj,
fill_color=color, line_color=color,
legend_label=legend_label)
elif marker == "asterisk":
r = fig.asterisk('x', 'y', size=12, source=source_obj,
fill_color=color, line_color=color,
legend_label=legend_label)
else:
r = fig.circle('x', 'y', size=10, source=source_obj,
fill_color=color, line_color=color,
legend_label=legend_label)
renderers[label + f" ({group_label})"] = r
return renderers
def get_color_maps(unique_subsets):
color_map = {}
num_real = len(unique_subsets["real"])
red_palette = Reds9[:num_real] if num_real <= 9 else (Reds9 * ((num_real // 9) + 1))[:num_real]
color_map["real"] = {label: red_palette[i] for i, label in enumerate(sorted(unique_subsets["real"]))}
color_map["synthetic"] = {}
for source, labels in unique_subsets["synthetic"].items():
if source == "es-digital-seq":
palette = Blues9[:len(labels)] if len(labels) <= 9 else (Blues9 * ((len(labels)//9)+1))[:len(labels)]
elif source == "es-digital-line-degradation-seq":
palette = Purples9[:len(labels)] if len(labels) <= 9 else (Purples9 * ((len(labels)//9)+1))[:len(labels)]
elif source == "es-digital-paragraph-degradation-seq":
palette = BuGn9[:len(labels)] if len(labels) <= 9 else (BuGn9 * ((len(labels)//9)+1))[:len(labels)]
elif source == "es-digital-rotation-degradation-seq":
palette = Greys9[:len(labels)] if len(labels) <= 9 else (Greys9 * ((len(labels)//9)+1))[:len(labels)]
elif source == "es-digital-zoom-degradation-seq":
palette = Oranges9[:len(labels)] if len(labels) <= 9 else (Oranges9 * ((len(labels)//9)+1))[:len(labels)]
elif source == "es-render-seq":
palette = Greens9[:len(labels)] if len(labels) <= 9 else (Greens9 * ((len(labels)//9)+1))[:len(labels)]
else:
palette = Blues9[:len(labels)] if len(labels) <= 9 else (Blues9 * ((len(labels)//9)+1))[:len(labels)]
color_map["synthetic"][source] = {label: palette[i] for i, label in enumerate(sorted(labels))}
# Asignar colores al subset pretrained usando, por ejemplo, la paleta Purples9
num_pretrained = len(unique_subsets["pretrained"])
purple_palette = Purples9[:num_pretrained] if num_pretrained <= 9 else (Purples9 * ((num_pretrained // 9) + 1))[:num_pretrained]
color_map["pretrained"] = {label: purple_palette[i] for i, label in enumerate(sorted(unique_subsets["pretrained"]))}
return color_map
def calculate_cluster_centers(df, labels):
centers = {}
for label in labels:
subset = df[df['label'] == label]
if not subset.empty and 'x' in subset.columns and 'y' in subset.columns:
centers[label] = (subset['x'].mean(), subset['y'].mean())
return centers
def compute_global_regression(df_combined, embedding_cols, tsne_params, df_f1, reduction_method="t-SNE", distance_metric="wasserstein"):
if reduction_method == "PCA":
reducer = PCA(n_components=N_COMPONENTS)
else:
reducer = TSNE(n_components=2, random_state=42,
perplexity=tsne_params["perplexity"],
learning_rate=tsne_params["learning_rate"])
reduced = reducer.fit_transform(df_combined[embedding_cols].values)
# Guardamos el embedding completo (4 dimensiones para PCA)
df_combined['embedding'] = list(reduced)
# Si el embedding es 2D (por t-SNE o PCA con 2 componentes) asignamos x e y para visualización
if reduced.shape[1] == 2:
df_combined['x'] = reduced[:, 0]
df_combined['y'] = reduced[:, 1]
explained_variance = None
if reduction_method == "PCA":
explained_variance = reducer.explained_variance_ratio_
trust = None
cont = None
if reduction_method == "t-SNE":
X = df_combined[embedding_cols].values
trust = trustworthiness(X, reduced, n_neighbors=TSNE_NEIGHBOURS)
cont = compute_continuity(X, reduced, n_neighbors=TSNE_NEIGHBOURS)
dfs_reduced, unique_subsets = split_versions(df_combined, reduced)
df_distances = compute_cluster_distances_synthetic_individual(
dfs_reduced["synthetic"],
dfs_reduced["real"],
unique_subsets["real"],
metric=distance_metric
)
global_distances = {}
for idx in df_distances.index:
if idx.startswith("Global"):
source = idx.split("(")[1].rstrip(")")
global_distances[source] = df_distances.loc[idx].values
all_x = []
all_y = []
for source in df_f1.columns:
if source in global_distances:
x_vals = global_distances[source]
y_vals = df_f1[source].values
all_x.extend(x_vals)
all_y.extend(y_vals)
all_x_arr = np.array(all_x).reshape(-1, 1)
all_y_arr = np.array(all_y)
model_global = LinearRegression().fit(all_x_arr, all_y_arr)
r2 = model_global.score(all_x_arr, all_y_arr)
slope = model_global.coef_[0]
intercept = model_global.intercept_
scatter_fig = figure(width=600, height=600, tools="pan,wheel_zoom,reset,save",
title="Scatter Plot: Distance vs F1")
source_colors = {
"es-digital-paragraph-degradation-seq": "blue",
"es-digital-line-degradation-seq": "green",
"es-digital-seq": "red",
"es-digital-zoom-degradation-seq": "orange",
"es-digital-rotation-degradation-seq": "purple",
"es-digital-rotation-zoom-degradation-seq": "brown",
"es-render-seq": "cyan"
}
for source in df_f1.columns:
if source in global_distances:
x_vals = global_distances[source]
y_vals = df_f1[source].values
data = {"x": x_vals, "y": y_vals, "Fuente": [source]*len(x_vals)}
cds = ColumnDataSource(data=data)
scatter_fig.circle('x', 'y', size=8, alpha=0.7, source=cds,
fill_color=source_colors.get(source, "gray"),
line_color=source_colors.get(source, "gray"),
legend_label=source)
scatter_fig.xaxis.axis_label = "Distance (Global, por Colegio)"
scatter_fig.yaxis.axis_label = "F1 Score"
scatter_fig.legend.location = "top_right"
hover_tool = HoverTool(tooltips=[("Distance", "@x"), ("F1", "@y"), ("Subset", "@Fuente")])
scatter_fig.add_tools(hover_tool)
x_line = np.linspace(all_x_arr.min(), all_x_arr.max(), 100)
y_line = model_global.predict(x_line.reshape(-1, 1))
scatter_fig.line(x_line, y_line, line_width=2, line_color="black", legend_label="Global Regression")
return {
"R2": r2,
"slope": slope,
"intercept": intercept,
"scatter_fig": scatter_fig,
"dfs_reduced": dfs_reduced,
"unique_subsets": unique_subsets,
"df_distances": df_distances,
"explained_variance": explained_variance,
"trustworthiness": trust,
"continuity": cont
}
def optimize_tsne_params(df_combined, embedding_cols, df_f1, distance_metric):
perplexity_range = np.linspace(30, 50, 10)
learning_rate_range = np.linspace(200, 1000, 20)
best_R2 = -np.inf
best_params = None
total_steps = len(perplexity_range) * len(learning_rate_range)
step = 0
progress_text = st.empty()
for p in perplexity_range:
for lr in learning_rate_range:
step += 1
progress_text.text(f"Evaluating: Perplexity={p:.2f}, Learning Rate={lr:.2f} (Step {step}/{total_steps})")
tsne_params = {"perplexity": p, "learning_rate": lr}
result = compute_global_regression(df_combined, embedding_cols, tsne_params, df_f1, reduction_method="t-SNE", distance_metric=distance_metric)
r2_temp = result["R2"]
st.write(f"Parameters: Perplexity={p:.2f}, Learning Rate={lr:.2f} -> R²={r2_temp:.4f}")
if r2_temp > best_R2:
best_R2 = r2_temp
best_params = (p, lr)
progress_text.text("Optimization completed!")
return best_params, best_R2
def run_model(model_name):
version = st.selectbox("Select Model Version:", options=["vanilla", "finetuned_real"], key=f"version_{model_name}")
# Nuevo selector para el cómputo del embedding
embedding_computation = st.selectbox("¿Cómo se computa el embedding?", options=["weighted", "averaged"], key=f"embedding_method_{model_name}")
# Se asigna el prefijo correspondiente
prefijo_embedding = "weighted_" if embedding_computation == "weighted" else "averaged_"
embeddings = load_embeddings(model_name, version, prefijo_embedding)
if embeddings is None:
return
embedding_cols = [col for col in embeddings["real"].columns if col.startswith("dim_")]
df_combined = pd.concat(list(embeddings.values()), ignore_index=True)
try:
df_f1 = pd.read_csv("data/f1-donut.csv", sep=';', index_col=0)
except Exception as e:
st.error(f"Error loading f1-donut.csv: {e}")
return
st.markdown('<h6 class="sub-title">Select Dimensionality Reduction Method</h6>', unsafe_allow_html=True)
reduction_method = st.selectbox("", options=["t-SNE", "PCA"], key=f"reduction_{model_name}")
distance_metric = st.selectbox("Select Distance Metric:",
options=["Wasserstein", "Euclidean", "KL"],
key=f"distance_metric_{model_name}")
tsne_params = {}
if reduction_method == "t-SNE":
if st.button("Optimize TSNE parameters", key=f"optimize_tsne_{model_name}"):
st.info("Running optimization, this can take a while...")
best_params, best_R2 = optimize_tsne_params(df_combined, embedding_cols, df_f1, distance_metric.lower())
st.success(f"Best parameters: Perplexity = {best_params[0]:.2f}, Learning Rate = {best_params[1]:.2f} with R² = {best_R2:.4f}")
tsne_params = {"perplexity": best_params[0], "learning_rate": best_params[1]}
else:
perplexity_val = st.number_input(
"Perplexity",
min_value=5.0,
max_value=50.0,
value=30.0,
step=1.0,
format="%.2f",
key=f"perplexity_{model_name}"
)
learning_rate_val = st.number_input(
"Learning Rate",
min_value=10.0,
max_value=1000.0,
value=200.0,
step=10.0,
format="%.2f",
key=f"learning_rate_{model_name}"
)
tsne_params = {"perplexity": perplexity_val, "learning_rate": learning_rate_val}
result = compute_global_regression(df_combined, embedding_cols, tsne_params, df_f1, reduction_method=reduction_method, distance_metric=distance_metric.lower())
reg_metrics = pd.DataFrame({
"Slope": [result["slope"]],
"Intercept": [result["intercept"]],
"R2": [result["R2"]]
})
st.table(reg_metrics)
if reduction_method == "PCA" and result["explained_variance"] is not None:
st.subheader("Explained Variance Ratio")
component_names = [f"PC{i+1}" for i in range(len(result["explained_variance"]))]
variance_df = pd.DataFrame({
"Component": component_names,
"Explained Variance": result["explained_variance"]
})
st.table(variance_df)
elif reduction_method == "t-SNE":
st.subheader("t-SNE Quality Metrics")
st.write(f"Trustworthiness: {result['trustworthiness']:.4f}")
st.write(f"Continuity: {result['continuity']:.4f}")
data_table, df_table, source_table = create_table(result["df_distances"])
real_subset_names = list(df_table.columns[1:])
real_select = Select(title="", value=real_subset_names[0], options=real_subset_names)
reset_button = Button(label="Reset Colors", button_type="primary")
line_source = ColumnDataSource(data={'x': [], 'y': []})
if (reduction_method == "t-SNE" and N_COMPONENTS == 2) or (reduction_method == "PCA" and N_COMPONENTS == 2):
fig, real_renderers, synthetic_renderers, pretrained_renderers = create_figure(
result["dfs_reduced"],
result["unique_subsets"],
get_color_maps(result["unique_subsets"]),
model_name
)
fig.line('x', 'y', source=line_source, line_width=2, line_color='black')
centers_real = calculate_cluster_centers(result["dfs_reduced"]["real"], result["unique_subsets"]["real"])
real_centers_js = {k: [v[0], v[1]] for k, v in centers_real.items()}
synthetic_centers = {}
synth_labels = sorted(result["dfs_reduced"]["synthetic"]['label'].unique().tolist())
for label in synth_labels:
subset = result["dfs_reduced"]["synthetic"][result["dfs_reduced"]["synthetic"]['label'] == label]
if 'x' in subset.columns and 'y' in subset.columns:
synthetic_centers[label] = [subset['x'].mean(), subset['y'].mean()]
callback = CustomJS(args=dict(source=source_table, line_source=line_source,
synthetic_centers=synthetic_centers,
real_centers=real_centers_js,
real_select=real_select),
code="""
var selected = source.selected.indices;
if (selected.length > 0) {
var idx = selected[0];
var data = source.data;
var synth_label = data['Synthetic'][idx];
var real_label = real_select.value;
var syn_coords = synthetic_centers[synth_label];
var real_coords = real_centers[real_label];
line_source.data = {'x': [syn_coords[0], real_coords[0]], 'y': [syn_coords[1], real_coords[1]]};
line_source.change.emit();
} else {
line_source.data = {'x': [], 'y': []};
line_source.change.emit();
}
""")
source_table.selected.js_on_change('indices', callback)
real_select.js_on_change('value', callback)
reset_callback = CustomJS(args=dict(line_source=line_source),
code="""
line_source.data = {'x': [], 'y': []};
line_source.change.emit();
""")
reset_button.js_on_event("button_click", reset_callback)
layout = column(fig, result["scatter_fig"], column(real_select, reset_button, data_table))
else:
layout = column(result["scatter_fig"], column(real_select, reset_button, data_table))
st.bokeh_chart(layout, use_container_width=True)
buffer = io.BytesIO()
df_table.to_excel(buffer, index=False)
buffer.seek(0)
st.download_button(
label="Export Table",
data=buffer,
file_name=f"cluster_distances_{model_name}.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
key=f"download_button_excel_{model_name}"
)
def main():
config_style()
tabs = st.tabs(["Donut", "Idefics2"])
with tabs[0]:
st.markdown('<h2 class="sub-title">Donut 🤗</h2>', unsafe_allow_html=True)
run_model("Donut")
with tabs[1]:
st.markdown('<h2 class="sub-title">Idefics2 🤗</h2>', unsafe_allow_html=True)
run_model("Idefics2")
if __name__ == "__main__":
main()