Spaces:
Running
Running
import streamlit as st | |
import random | |
import numpy as np | |
from bokeh.plotting import figure | |
from bokeh.embed import components | |
from bokeh.models import ColumnDataSource, HoverTool | |
def generate_interactive_plot_html(): | |
# Generar datos de ejemplo | |
N = 10 | |
x = np.random.rand(N) | |
y = np.random.rand(N) | |
# Dos im谩genes de ejemplo codificadas en base64: | |
red_image = "" | |
blue_image = "" | |
# Asignar a cada punto una imagen aleatoria y una etiqueta | |
images = [random.choice([red_image, blue_image]) for _ in range(N)] | |
labels = ["subset1" if img == red_image else "subset2" for img in images] | |
# Crear el ColumnDataSource para Bokeh | |
source = ColumnDataSource(data=dict(x=x, y=y, img=images, label=labels)) | |
# Crear la figura | |
p = figure(title="Interactive Plot with Hover Images", tools="hover", width=600, height=600) | |
p.scatter('x', 'y', size=15, source=source, fill_color="navy", alpha=0.5) | |
# Configurar el HoverTool para mostrar la etiqueta e imagen | |
hover = p.select_one(HoverTool) | |
hover.tooltips = """ | |
<div> | |
<div> | |
<span style="font-size: 12px; font-weight: bold;">Label: @label</span> | |
</div> | |
<div> | |
<img src="@img" alt="Image" style="width:100px;"/> | |
</div> | |
</div> | |
""" | |
# Obtener el script y el div del plot | |
script, div = components(p) | |
# Construir el HTML completo, incluyendo los recursos de BokehJS versi贸n 1.4.0 | |
html = f""" | |
<html> | |
<head> | |
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/build/css/bokeh.min.css" type="text/css"> | |
<script src="https://cdn.jsdelivr.net/npm/[email protected]/build/js/lib/bokeh.min.js"></script> | |
</head> | |
<body> | |
{div} | |
{script} | |
</body> | |
</html> | |
""" | |
return html | |
# Genera el HTML del plot interactivo | |
plot_html = generate_interactive_plot_html() | |
# Usa el componente de Streamlit para incrustar el HTML sin sanitizaci贸n | |
st.components.v1.html(plot_html, height=700) | |