Spaces:
Running
Running
Commit
路
0598719
1
Parent(s):
8386048
Explained Variace Section for PCA
Browse files
app.py
CHANGED
@@ -312,6 +312,12 @@ def compute_global_regression(df_combined, embedding_cols, tsne_params, df_f1, r
|
|
312 |
learning_rate=tsne_params["learning_rate"])
|
313 |
|
314 |
reduced = reducer.fit_transform(df_combined[embedding_cols].values)
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
dfs_reduced, unique_subsets = split_versions(df_combined, reduced)
|
316 |
|
317 |
df_distances = compute_wasserstein_distances_synthetic_individual(
|
@@ -380,9 +386,11 @@ def compute_global_regression(df_combined, embedding_cols, tsne_params, df_f1, r
|
|
380 |
"scatter_fig": scatter_fig,
|
381 |
"dfs_reduced": dfs_reduced,
|
382 |
"unique_subsets": unique_subsets,
|
383 |
-
"df_distances": df_distances
|
|
|
384 |
}
|
385 |
|
|
|
386 |
# =============================================================================
|
387 |
# Funci贸n de optimizaci贸n (grid search) para TSNE, usando la misma pipeline
|
388 |
# =============================================================================
|
@@ -476,6 +484,15 @@ def run_model(model_name):
|
|
476 |
})
|
477 |
st.table(reg_metrics)
|
478 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
479 |
data_table, df_table, source_table = create_table(result["df_distances"])
|
480 |
real_subset_names = list(df_table.columns[1:])
|
481 |
real_select = Select(title="", value=real_subset_names[0], options=real_subset_names)
|
@@ -537,6 +554,7 @@ def run_model(model_name):
|
|
537 |
key=f"download_button_excel_{model_name}"
|
538 |
)
|
539 |
|
|
|
540 |
def main():
|
541 |
config_style()
|
542 |
tabs = st.tabs(["Donut", "Idefics2"])
|
|
|
312 |
learning_rate=tsne_params["learning_rate"])
|
313 |
|
314 |
reduced = reducer.fit_transform(df_combined[embedding_cols].values)
|
315 |
+
|
316 |
+
# Si se usa PCA, capturamos la varianza explicada
|
317 |
+
explained_variance = None
|
318 |
+
if reduction_method == "PCA":
|
319 |
+
explained_variance = reducer.explained_variance_ratio_
|
320 |
+
|
321 |
dfs_reduced, unique_subsets = split_versions(df_combined, reduced)
|
322 |
|
323 |
df_distances = compute_wasserstein_distances_synthetic_individual(
|
|
|
386 |
"scatter_fig": scatter_fig,
|
387 |
"dfs_reduced": dfs_reduced,
|
388 |
"unique_subsets": unique_subsets,
|
389 |
+
"df_distances": df_distances,
|
390 |
+
"explained_variance": explained_variance # Se incluye la varianza explicada (solo para PCA)
|
391 |
}
|
392 |
|
393 |
+
|
394 |
# =============================================================================
|
395 |
# Funci贸n de optimizaci贸n (grid search) para TSNE, usando la misma pipeline
|
396 |
# =============================================================================
|
|
|
484 |
})
|
485 |
st.table(reg_metrics)
|
486 |
|
487 |
+
# Si se ha utilizado PCA, mostramos la varianza explicada
|
488 |
+
if reduction_method == "PCA" and result["explained_variance"] is not None:
|
489 |
+
st.subheader("Explained Variance Ratio")
|
490 |
+
variance_df = pd.DataFrame({
|
491 |
+
"Component": ["PC1", "PC2"],
|
492 |
+
"Explained Variance": result["explained_variance"]
|
493 |
+
})
|
494 |
+
st.table(variance_df)
|
495 |
+
|
496 |
data_table, df_table, source_table = create_table(result["df_distances"])
|
497 |
real_subset_names = list(df_table.columns[1:])
|
498 |
real_select = Select(title="", value=real_subset_names[0], options=real_subset_names)
|
|
|
554 |
key=f"download_button_excel_{model_name}"
|
555 |
)
|
556 |
|
557 |
+
|
558 |
def main():
|
559 |
config_style()
|
560 |
tabs = st.tabs(["Donut", "Idefics2"])
|