Spaces:
Sleeping
Sleeping
Commit
路
529a2e6
1
Parent(s):
eb95735
Proper File Selection
Browse files
app.py
CHANGED
@@ -14,6 +14,7 @@ from sklearn.linear_model import LinearRegression
|
|
14 |
|
15 |
N_COMPONENTS = 2
|
16 |
TSNE_NEIGHBOURS = 150
|
|
|
17 |
|
18 |
TOOLTIPS = """
|
19 |
<div>
|
@@ -40,16 +41,16 @@ def config_style():
|
|
40 |
""", unsafe_allow_html=True)
|
41 |
st.markdown('<h1 class="main-title">Merit Embeddings 馃帓馃搩馃弳</h1>', unsafe_allow_html=True)
|
42 |
|
43 |
-
def load_embeddings(model, version, embedding_prefix):
|
44 |
if model == "Donut":
|
45 |
-
df_real = pd.read_csv(f"data/
|
46 |
-
df_par = pd.read_csv(f"data/
|
47 |
-
df_line = pd.read_csv(f"data/
|
48 |
-
df_seq = pd.read_csv(f"data/
|
49 |
-
df_rot = pd.read_csv(f"data/
|
50 |
-
df_zoom = pd.read_csv(f"data/
|
51 |
-
df_render = pd.read_csv(f"data/
|
52 |
-
df_pretratrained = pd.read_csv(f"data/
|
53 |
|
54 |
# Asignar etiquetas de versi贸n
|
55 |
df_real["version"] = "real"
|
@@ -540,9 +541,16 @@ def run_model(model_name):
|
|
540 |
# Selector para el m茅todo de c贸mputo del embedding
|
541 |
embedding_computation = st.selectbox("驴C贸mo se computa el embedding?", options=["weighted", "averaged"], key=f"embedding_method_{model_name}")
|
542 |
# Se asigna el prefijo correspondiente
|
543 |
-
prefijo_embedding = "weighted_" if embedding_computation == "weighted" else "averaged_"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
544 |
|
545 |
-
embeddings = load_embeddings(model_name, version,
|
546 |
if embeddings is None:
|
547 |
return
|
548 |
|
|
|
14 |
|
15 |
N_COMPONENTS = 2
|
16 |
TSNE_NEIGHBOURS = 150
|
17 |
+
WEIGHT_FACTOR = 0.25
|
18 |
|
19 |
TOOLTIPS = """
|
20 |
<div>
|
|
|
41 |
""", unsafe_allow_html=True)
|
42 |
st.markdown('<h1 class="main-title">Merit Embeddings 馃帓馃搩馃弳</h1>', unsafe_allow_html=True)
|
43 |
|
44 |
+
def load_embeddings(model, version, embedding_prefix, weight_factor):
|
45 |
if model == "Donut":
|
46 |
+
df_real = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_secret_all_{weight_factor}embeddings.csv")
|
47 |
+
df_par = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-paragraph-degradation-seq_{weight_factor}embeddings.csv")
|
48 |
+
df_line = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-line-degradation-seq_{weight_factor}embeddings.csv")
|
49 |
+
df_seq = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-seq_{weight_factor}embeddings.csv")
|
50 |
+
df_rot = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-rotation-degradation-seq_{weight_factor}embeddings.csv")
|
51 |
+
df_zoom = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-zoom-degradation-seq_{weight_factor}embeddings.csv")
|
52 |
+
df_render = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-render-seq_{weight_factor}embeddings.csv")
|
53 |
+
df_pretratrained = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_aux_IIT-CDIP_{weight_factor}embeddings.csv")
|
54 |
|
55 |
# Asignar etiquetas de versi贸n
|
56 |
df_real["version"] = "real"
|
|
|
541 |
# Selector para el m茅todo de c贸mputo del embedding
|
542 |
embedding_computation = st.selectbox("驴C贸mo se computa el embedding?", options=["weighted", "averaged"], key=f"embedding_method_{model_name}")
|
543 |
# Se asigna el prefijo correspondiente
|
544 |
+
# prefijo_embedding = "weighted_" if embedding_computation == "weighted" else "averaged_"
|
545 |
+
|
546 |
+
if embedding_computation == "weighted":
|
547 |
+
# prefijo_embedding = "weighted_"
|
548 |
+
weight_factor = f"{WEIGHT_FACTOR}_"
|
549 |
+
else:
|
550 |
+
# prefijo_embedding = "averaged_"
|
551 |
+
weight_factor = ""
|
552 |
|
553 |
+
embeddings = load_embeddings(model_name, version, embedding_computation, weight_factor)
|
554 |
if embeddings is None:
|
555 |
return
|
556 |
|