de-Rodrigo commited on
Commit
529a2e6
1 Parent(s): eb95735

Proper File Selection

Browse files
Files changed (1) hide show
  1. app.py +19 -11
app.py CHANGED
@@ -14,6 +14,7 @@ from sklearn.linear_model import LinearRegression
14
 
15
  N_COMPONENTS = 2
16
  TSNE_NEIGHBOURS = 150
 
17
 
18
  TOOLTIPS = """
19
  <div>
@@ -40,16 +41,16 @@ def config_style():
40
  """, unsafe_allow_html=True)
41
  st.markdown('<h1 class="main-title">Merit Embeddings 馃帓馃搩馃弳</h1>', unsafe_allow_html=True)
42
 
43
- def load_embeddings(model, version, embedding_prefix):
44
  if model == "Donut":
45
- df_real = pd.read_csv(f"data/donut_{version}_de_Rodrigo_merit_secret_all_{embedding_prefix}embeddings.csv")
46
- df_par = pd.read_csv(f"data/donut_{version}_de_Rodrigo_merit_es-digital-paragraph-degradation-seq_{embedding_prefix}embeddings.csv")
47
- df_line = pd.read_csv(f"data/donut_{version}_de_Rodrigo_merit_es-digital-line-degradation-seq_{embedding_prefix}embeddings.csv")
48
- df_seq = pd.read_csv(f"data/donut_{version}_de_Rodrigo_merit_es-digital-seq_{embedding_prefix}embeddings.csv")
49
- df_rot = pd.read_csv(f"data/donut_{version}_de_Rodrigo_merit_es-digital-rotation-degradation-seq_{embedding_prefix}embeddings.csv")
50
- df_zoom = pd.read_csv(f"data/donut_{version}_de_Rodrigo_merit_es-digital-zoom-degradation-seq_{embedding_prefix}embeddings.csv")
51
- df_render = pd.read_csv(f"data/donut_{version}_de_Rodrigo_merit_es-render-seq_{embedding_prefix}embeddings.csv")
52
- df_pretratrained = pd.read_csv(f"data/donut_{version}_de_Rodrigo_merit_aux_IIT-CDIP_{embedding_prefix}embeddings.csv")
53
 
54
  # Asignar etiquetas de versi贸n
55
  df_real["version"] = "real"
@@ -540,9 +541,16 @@ def run_model(model_name):
540
  # Selector para el m茅todo de c贸mputo del embedding
541
  embedding_computation = st.selectbox("驴C贸mo se computa el embedding?", options=["weighted", "averaged"], key=f"embedding_method_{model_name}")
542
  # Se asigna el prefijo correspondiente
543
- prefijo_embedding = "weighted_" if embedding_computation == "weighted" else "averaged_"
 
 
 
 
 
 
 
544
 
545
- embeddings = load_embeddings(model_name, version, prefijo_embedding)
546
  if embeddings is None:
547
  return
548
 
 
14
 
15
  N_COMPONENTS = 2
16
  TSNE_NEIGHBOURS = 150
17
+ WEIGHT_FACTOR = 0.25
18
 
19
  TOOLTIPS = """
20
  <div>
 
41
  """, unsafe_allow_html=True)
42
  st.markdown('<h1 class="main-title">Merit Embeddings 馃帓馃搩馃弳</h1>', unsafe_allow_html=True)
43
 
44
+ def load_embeddings(model, version, embedding_prefix, weight_factor):
45
  if model == "Donut":
46
+ df_real = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_secret_all_{weight_factor}embeddings.csv")
47
+ df_par = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-paragraph-degradation-seq_{weight_factor}embeddings.csv")
48
+ df_line = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-line-degradation-seq_{weight_factor}embeddings.csv")
49
+ df_seq = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-seq_{weight_factor}embeddings.csv")
50
+ df_rot = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-rotation-degradation-seq_{weight_factor}embeddings.csv")
51
+ df_zoom = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-zoom-degradation-seq_{weight_factor}embeddings.csv")
52
+ df_render = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-render-seq_{weight_factor}embeddings.csv")
53
+ df_pretratrained = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_aux_IIT-CDIP_{weight_factor}embeddings.csv")
54
 
55
  # Asignar etiquetas de versi贸n
56
  df_real["version"] = "real"
 
541
  # Selector para el m茅todo de c贸mputo del embedding
542
  embedding_computation = st.selectbox("驴C贸mo se computa el embedding?", options=["weighted", "averaged"], key=f"embedding_method_{model_name}")
543
  # Se asigna el prefijo correspondiente
544
+ # prefijo_embedding = "weighted_" if embedding_computation == "weighted" else "averaged_"
545
+
546
+ if embedding_computation == "weighted":
547
+ # prefijo_embedding = "weighted_"
548
+ weight_factor = f"{WEIGHT_FACTOR}_"
549
+ else:
550
+ # prefijo_embedding = "averaged_"
551
+ weight_factor = ""
552
 
553
+ embeddings = load_embeddings(model_name, version, embedding_computation, weight_factor)
554
  if embeddings is None:
555
  return
556