Spaces:
Running
Running
Commit
路
5498932
1
Parent(s):
c6959dd
Update Requirements
Browse files
app.py
CHANGED
|
@@ -3,6 +3,8 @@ import pandas as pd
|
|
| 3 |
from bokeh.plotting import figure
|
| 4 |
from bokeh.models import ColumnDataSource
|
| 5 |
from bokeh.palettes import Category10
|
|
|
|
|
|
|
| 6 |
|
| 7 |
TOOLTIPS = """
|
| 8 |
<div>
|
|
@@ -86,64 +88,78 @@ if __name__ == "__main__":
|
|
| 86 |
config_style()
|
| 87 |
|
| 88 |
# --- Primer gr谩fico: datos de Donut ---
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
#
|
| 93 |
donut_mode = st.selectbox(
|
| 94 |
"Seleccione visualizaci贸n para Donut:",
|
| 95 |
options=["PCA", "t-SNE"]
|
| 96 |
)
|
| 97 |
|
| 98 |
-
#
|
|
|
|
|
|
|
|
|
|
| 99 |
if donut_mode == "PCA":
|
| 100 |
-
|
|
|
|
| 101 |
else:
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
plot_placeholder = st.empty()
|
| 106 |
-
|
| 107 |
# Mostrar gr谩fico inicial con todas las etiquetas
|
| 108 |
-
render_plot(unique_labels,
|
| 109 |
-
|
| 110 |
# Desplegable para filtrar etiquetas
|
| 111 |
selected_labels = st.multiselect(
|
| 112 |
"Seleccione subsets para visualizar (Donut):",
|
| 113 |
options=unique_labels,
|
| 114 |
default=unique_labels
|
| 115 |
)
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
# --- Segundo gr谩fico: datos de Idefics2 ---
|
| 120 |
st.markdown('<h2 class="sub-title">Idefics2</h2>', unsafe_allow_html=True)
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
# Desplegable para seleccionar visualizaci贸n para Idefics2
|
| 126 |
idefics2_mode = st.selectbox(
|
| 127 |
"Seleccione visualizaci贸n para Idefics2:",
|
| 128 |
options=["PCA", "t-SNE"],
|
| 129 |
key="idefics2_mode"
|
| 130 |
)
|
| 131 |
|
|
|
|
|
|
|
|
|
|
| 132 |
if idefics2_mode == "PCA":
|
| 133 |
-
|
|
|
|
| 134 |
else:
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
plot_placeholder2 = st.empty()
|
| 139 |
-
|
| 140 |
-
render_plot(unique_labels2,
|
| 141 |
-
|
| 142 |
selected_labels2 = st.multiselect(
|
| 143 |
"Seleccione subsets para visualizar (Idefics2):",
|
| 144 |
options=unique_labels2,
|
| 145 |
default=unique_labels2,
|
| 146 |
key="idefics2"
|
| 147 |
)
|
| 148 |
-
|
| 149 |
-
render_plot(selected_labels2, current_df_idefics2, plot_placeholder2)
|
|
|
|
| 3 |
from bokeh.plotting import figure
|
| 4 |
from bokeh.models import ColumnDataSource
|
| 5 |
from bokeh.palettes import Category10
|
| 6 |
+
from sklearn.decomposition import PCA
|
| 7 |
+
from sklearn.manifold import TSNE
|
| 8 |
|
| 9 |
TOOLTIPS = """
|
| 10 |
<div>
|
|
|
|
| 88 |
config_style()
|
| 89 |
|
| 90 |
# --- Primer gr谩fico: datos de Donut ---
|
| 91 |
+
# Se asume que "embeddings_donut.csv" contiene las columnas "dim_0", "dim_1", ..., "dim_N", adem谩s de "label" e "img"
|
| 92 |
+
df_donut = pd.read_csv("data/donut_de_Rodrigo_merit_secret_all_embeddings.csv")
|
| 93 |
+
|
| 94 |
+
# Selecci贸n de visualizaci贸n
|
| 95 |
donut_mode = st.selectbox(
|
| 96 |
"Seleccione visualizaci贸n para Donut:",
|
| 97 |
options=["PCA", "t-SNE"]
|
| 98 |
)
|
| 99 |
|
| 100 |
+
# Extraer columnas de embedding (aquellas que empiezan con "dim_")
|
| 101 |
+
embedding_cols = [col for col in df_donut.columns if col.startswith("dim_")]
|
| 102 |
+
all_embeddings = df_donut[embedding_cols].values
|
| 103 |
+
|
| 104 |
if donut_mode == "PCA":
|
| 105 |
+
pca = PCA(n_components=2)
|
| 106 |
+
reduced = pca.fit_transform(all_embeddings)
|
| 107 |
else:
|
| 108 |
+
tsne = TSNE(n_components=2, random_state=42, perplexity=30, learning_rate=200)
|
| 109 |
+
reduced = tsne.fit_transform(all_embeddings)
|
| 110 |
+
|
| 111 |
+
# A帽adir las coordenadas resultantes al DataFrame
|
| 112 |
+
df_donut['x'] = reduced[:, 0]
|
| 113 |
+
df_donut['y'] = reduced[:, 1]
|
| 114 |
+
|
| 115 |
+
unique_labels = df_donut['label'].unique().tolist()
|
| 116 |
plot_placeholder = st.empty()
|
| 117 |
+
|
| 118 |
# Mostrar gr谩fico inicial con todas las etiquetas
|
| 119 |
+
render_plot(unique_labels, df_donut, plot_placeholder)
|
| 120 |
+
|
| 121 |
# Desplegable para filtrar etiquetas
|
| 122 |
selected_labels = st.multiselect(
|
| 123 |
"Seleccione subsets para visualizar (Donut):",
|
| 124 |
options=unique_labels,
|
| 125 |
default=unique_labels
|
| 126 |
)
|
| 127 |
+
render_plot(selected_labels, df_donut, plot_placeholder)
|
| 128 |
+
|
|
|
|
| 129 |
# --- Segundo gr谩fico: datos de Idefics2 ---
|
| 130 |
st.markdown('<h2 class="sub-title">Idefics2</h2>', unsafe_allow_html=True)
|
| 131 |
+
|
| 132 |
+
# Se asume que "embeddings_idefics2.csv" tiene la misma estructura
|
| 133 |
+
df_idefics2 = pd.read_csv("data/embeddings_idefics2.csv")
|
| 134 |
+
|
|
|
|
| 135 |
idefics2_mode = st.selectbox(
|
| 136 |
"Seleccione visualizaci贸n para Idefics2:",
|
| 137 |
options=["PCA", "t-SNE"],
|
| 138 |
key="idefics2_mode"
|
| 139 |
)
|
| 140 |
|
| 141 |
+
embedding_cols2 = [col for col in df_idefics2.columns if col.startswith("dim_")]
|
| 142 |
+
all_embeddings2 = df_idefics2[embedding_cols2].values
|
| 143 |
+
|
| 144 |
if idefics2_mode == "PCA":
|
| 145 |
+
pca2 = PCA(n_components=2)
|
| 146 |
+
reduced2 = pca2.fit_transform(all_embeddings2)
|
| 147 |
else:
|
| 148 |
+
tsne2 = TSNE(n_components=2, random_state=42, perplexity=30, learning_rate=200)
|
| 149 |
+
reduced2 = tsne2.fit_transform(all_embeddings2)
|
| 150 |
+
|
| 151 |
+
df_idefics2['x'] = reduced2[:, 0]
|
| 152 |
+
df_idefics2['y'] = reduced2[:, 1]
|
| 153 |
+
|
| 154 |
+
unique_labels2 = df_idefics2['label'].unique().tolist()
|
| 155 |
plot_placeholder2 = st.empty()
|
| 156 |
+
|
| 157 |
+
render_plot(unique_labels2, df_idefics2, plot_placeholder2)
|
| 158 |
+
|
| 159 |
selected_labels2 = st.multiselect(
|
| 160 |
"Seleccione subsets para visualizar (Idefics2):",
|
| 161 |
options=unique_labels2,
|
| 162 |
default=unique_labels2,
|
| 163 |
key="idefics2"
|
| 164 |
)
|
| 165 |
+
render_plot(selected_labels2, df_idefics2, plot_placeholder2)
|
|
|