Spaces:
Running
Running
Commit
路
69db70c
1
Parent(s):
71b912e
Include Max and Min Distances in Table
Browse files
app.py
CHANGED
@@ -127,11 +127,27 @@ def create_table(df_distances):
|
|
127 |
df_table = df_distances.copy()
|
128 |
df_table.reset_index(inplace=True)
|
129 |
df_table.rename(columns={'index': 'Synthetic'}, inplace=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
source_table = ColumnDataSource(df_table)
|
131 |
columns = [TableColumn(field='Synthetic', title='Synthetic')]
|
132 |
for col in df_table.columns:
|
133 |
if col != 'Synthetic':
|
134 |
columns.append(TableColumn(field=col, title=col))
|
|
|
135 |
row_height = 28
|
136 |
header_height = 30
|
137 |
total_height = header_height + len(df_table) * row_height
|
@@ -139,6 +155,8 @@ def create_table(df_distances):
|
|
139 |
data_table = DataTable(source=source_table, columns=columns, sizing_mode='stretch_width', height=total_height)
|
140 |
return data_table, df_table, source_table
|
141 |
|
|
|
|
|
142 |
# Funci贸n que ejecuta todo el proceso para un modelo determinado
|
143 |
def run_model(model_name):
|
144 |
embeddings = load_embeddings(model_name)
|
@@ -278,7 +296,7 @@ def run_model(model_name):
|
|
278 |
|
279 |
# Agregar un bot贸n de descarga en Streamlit
|
280 |
st.download_button(
|
281 |
-
label="
|
282 |
data=buffer,
|
283 |
file_name=f"cluster_distances_{model_name}.xlsx",
|
284 |
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
@@ -293,11 +311,11 @@ def main():
|
|
293 |
tabs = st.tabs(["Donut", "Idefics2"])
|
294 |
|
295 |
with tabs[0]:
|
296 |
-
st.markdown('<h2 class="sub-title">
|
297 |
run_model("Donut")
|
298 |
|
299 |
with tabs[1]:
|
300 |
-
st.markdown('<h2 class="sub-title">
|
301 |
run_model("Idefics2")
|
302 |
|
303 |
if __name__ == "__main__":
|
|
|
127 |
df_table = df_distances.copy()
|
128 |
df_table.reset_index(inplace=True)
|
129 |
df_table.rename(columns={'index': 'Synthetic'}, inplace=True)
|
130 |
+
|
131 |
+
# Calcular las filas de medias, m谩ximos y m铆nimos para cada columna num茅rica
|
132 |
+
min_row = {"Synthetic": "Min."}
|
133 |
+
mean_row = {"Synthetic": "Mean"}
|
134 |
+
max_row = {"Synthetic": "Max."}
|
135 |
+
|
136 |
+
for col in df_table.columns:
|
137 |
+
if col != "Synthetic":
|
138 |
+
min_row[col] = df_table[col].min()
|
139 |
+
mean_row[col] = df_table[col].mean()
|
140 |
+
max_row[col] = df_table[col].max()
|
141 |
+
|
142 |
+
# Agregar las filas de medias, m谩ximos y m铆nimos al final del DataFrame
|
143 |
+
df_table = pd.concat([df_table, pd.DataFrame([min_row, mean_row, max_row])], ignore_index=True)
|
144 |
+
|
145 |
source_table = ColumnDataSource(df_table)
|
146 |
columns = [TableColumn(field='Synthetic', title='Synthetic')]
|
147 |
for col in df_table.columns:
|
148 |
if col != 'Synthetic':
|
149 |
columns.append(TableColumn(field=col, title=col))
|
150 |
+
|
151 |
row_height = 28
|
152 |
header_height = 30
|
153 |
total_height = header_height + len(df_table) * row_height
|
|
|
155 |
data_table = DataTable(source=source_table, columns=columns, sizing_mode='stretch_width', height=total_height)
|
156 |
return data_table, df_table, source_table
|
157 |
|
158 |
+
|
159 |
+
|
160 |
# Funci贸n que ejecuta todo el proceso para un modelo determinado
|
161 |
def run_model(model_name):
|
162 |
embeddings = load_embeddings(model_name)
|
|
|
296 |
|
297 |
# Agregar un bot贸n de descarga en Streamlit
|
298 |
st.download_button(
|
299 |
+
label="Export Table",
|
300 |
data=buffer,
|
301 |
file_name=f"cluster_distances_{model_name}.xlsx",
|
302 |
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
|
|
311 |
tabs = st.tabs(["Donut", "Idefics2"])
|
312 |
|
313 |
with tabs[0]:
|
314 |
+
st.markdown('<h2 class="sub-title">Donut 馃</h2>', unsafe_allow_html=True)
|
315 |
run_model("Donut")
|
316 |
|
317 |
with tabs[1]:
|
318 |
+
st.markdown('<h2 class="sub-title">Idefics2 馃</h2>', unsafe_allow_html=True)
|
319 |
run_model("Idefics2")
|
320 |
|
321 |
if __name__ == "__main__":
|