Spaces:
Sleeping
Sleeping
Commit
路
6ee3759
1
Parent(s):
94c64c7
Include Different Dataset Versions and Fancy Display
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
from bokeh.plotting import figure
|
4 |
from bokeh.models import ColumnDataSource
|
5 |
-
from bokeh.palettes import
|
6 |
from sklearn.decomposition import PCA
|
7 |
from sklearn.manifold import TSNE
|
8 |
|
@@ -17,149 +17,126 @@ TOOLTIPS = """
|
|
17 |
</div>
|
18 |
"""
|
19 |
|
20 |
-
def render_plot(selected_labels, df, plot_placeholder):
|
21 |
-
if not selected_labels:
|
22 |
-
st.write("No data to display. Please select at least one subset.")
|
23 |
-
return
|
24 |
-
|
25 |
-
filtered_data = df[df['label'].isin(selected_labels)]
|
26 |
-
p = figure(width=400, height=400, tooltips=TOOLTIPS)
|
27 |
-
|
28 |
-
num_labels = len(selected_labels)
|
29 |
-
# Ajuste de la paleta
|
30 |
-
if num_labels < 3:
|
31 |
-
palette = Category10[3][:num_labels]
|
32 |
-
elif num_labels in [3, 4, 5, 6, 7, 8, 9, 10]:
|
33 |
-
palette = Category10[num_labels]
|
34 |
-
else:
|
35 |
-
palette = Category10[10][:num_labels]
|
36 |
-
|
37 |
-
# Graficar cada label por separado
|
38 |
-
for label, color in zip(selected_labels, palette):
|
39 |
-
subset = filtered_data[filtered_data['label'] == label]
|
40 |
-
source = ColumnDataSource(data=dict(
|
41 |
-
x=subset['x'],
|
42 |
-
y=subset['y'],
|
43 |
-
label=subset['label'],
|
44 |
-
img=subset['img']
|
45 |
-
))
|
46 |
-
p.scatter('x', 'y', size=12, source=source, color=color, legend_label=label)
|
47 |
-
|
48 |
-
p.legend.title = "Subsets"
|
49 |
-
p.legend.location = "top_right"
|
50 |
-
p.legend.click_policy = "hide"
|
51 |
-
|
52 |
-
plot_placeholder.bokeh_chart(p)
|
53 |
-
|
54 |
def config_style():
|
55 |
-
st.markdown(
|
56 |
-
"""
|
57 |
<style>
|
58 |
-
.main-title {
|
59 |
-
|
60 |
-
|
61 |
-
text-align: center;
|
62 |
-
}
|
63 |
-
.sub-title {
|
64 |
-
font-size: 30px;
|
65 |
-
color: #555;
|
66 |
-
}
|
67 |
-
.custom-text {
|
68 |
-
font-size: 18px;
|
69 |
-
line-height: 1.5;
|
70 |
-
}
|
71 |
</style>
|
72 |
-
|
73 |
-
unsafe_allow_html=True
|
74 |
-
)
|
75 |
-
|
76 |
st.markdown('<h1 class="main-title">Merit Secret Embeddings 馃帓馃搩馃弳</h1>', unsafe_allow_html=True)
|
77 |
-
st.markdown('<h2 class="sub-title">Donut</h2>', unsafe_allow_html=True)
|
78 |
st.markdown(
|
79 |
"""
|
80 |
<p class="custom-text">
|
81 |
-
|
|
|
|
|
82 |
</p>
|
83 |
-
""",
|
84 |
-
unsafe_allow_html=True
|
85 |
-
)
|
86 |
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
df_donut = pd.read_csv("data/donut_de_Rodrigo_merit_secret_all_embeddings.csv")
|
93 |
-
|
94 |
-
# Selecci贸n de visualizaci贸n
|
95 |
-
donut_mode = st.selectbox(
|
96 |
-
"Seleccione visualizaci贸n para Donut:",
|
97 |
-
options=["PCA", "t-SNE"]
|
98 |
-
)
|
99 |
-
|
100 |
-
# Extraer columnas de embedding (aquellas que empiezan con "dim_")
|
101 |
-
embedding_cols = [col for col in df_donut.columns if col.startswith("dim_")]
|
102 |
-
all_embeddings = df_donut[embedding_cols].values
|
103 |
-
|
104 |
-
if donut_mode == "PCA":
|
105 |
-
pca = PCA(n_components=2)
|
106 |
-
reduced = pca.fit_transform(all_embeddings)
|
107 |
-
else:
|
108 |
-
tsne = TSNE(n_components=2, random_state=42, perplexity=30, learning_rate=200)
|
109 |
-
reduced = tsne.fit_transform(all_embeddings)
|
110 |
-
|
111 |
-
# A帽adir las coordenadas resultantes al DataFrame
|
112 |
-
df_donut['x'] = reduced[:, 0]
|
113 |
-
df_donut['y'] = reduced[:, 1]
|
114 |
-
|
115 |
-
unique_labels = df_donut['label'].unique().tolist()
|
116 |
-
plot_placeholder = st.empty()
|
117 |
|
118 |
-
|
119 |
-
render_plot(unique_labels, df_donut, plot_placeholder)
|
120 |
|
121 |
-
#
|
122 |
-
|
123 |
-
|
124 |
-
options=unique_labels,
|
125 |
-
default=unique_labels
|
126 |
-
)
|
127 |
-
render_plot(selected_labels, df_donut, plot_placeholder)
|
128 |
|
129 |
-
#
|
130 |
-
|
|
|
131 |
|
132 |
-
# Se asume que
|
133 |
-
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
options=["PCA", "t-SNE"],
|
138 |
-
key="idefics2_mode"
|
139 |
-
)
|
140 |
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
147 |
else:
|
148 |
-
|
149 |
-
|
150 |
|
151 |
-
|
152 |
-
|
|
|
153 |
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
156 |
|
157 |
-
|
|
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
key="idefics2"
|
164 |
-
)
|
165 |
-
render_plot(selected_labels2, df_idefics2, plot_placeholder2)
|
|
|
2 |
import pandas as pd
|
3 |
from bokeh.plotting import figure
|
4 |
from bokeh.models import ColumnDataSource
|
5 |
+
from bokeh.palettes import Reds9, Blues9
|
6 |
from sklearn.decomposition import PCA
|
7 |
from sklearn.manifold import TSNE
|
8 |
|
|
|
17 |
</div>
|
18 |
"""
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def config_style():
|
21 |
+
st.markdown("""
|
|
|
22 |
<style>
|
23 |
+
.main-title { font-size: 50px; color: #4CAF50; text-align: center; }
|
24 |
+
.sub-title { font-size: 30px; color: #555; }
|
25 |
+
.custom-text { font-size: 18px; line-height: 1.5; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
</style>
|
27 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
28 |
st.markdown('<h1 class="main-title">Merit Secret Embeddings 馃帓馃搩馃弳</h1>', unsafe_allow_html=True)
|
29 |
+
st.markdown('<h2 class="sub-title">Donut - Comparaci贸n de versiones</h2>', unsafe_allow_html=True)
|
30 |
st.markdown(
|
31 |
"""
|
32 |
<p class="custom-text">
|
33 |
+
Se cargan ambas versiones de los embeddings y se aplica una reducci贸n dimensional sobre el conjunto combinado.
|
34 |
+
Los puntos de la versi贸n vanilla se muestran como <strong>c铆rculos</strong> (tonos de rojo)
|
35 |
+
y los de la v2 como <strong>cuadrados</strong> (tonos de azul).
|
36 |
</p>
|
37 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
38 |
|
39 |
+
def add_dataset_to_fig(fig, df, selected_labels, marker, color_mapping):
|
40 |
+
for label in selected_labels:
|
41 |
+
subset = df[df['label'] == label]
|
42 |
+
if subset.empty:
|
43 |
+
continue
|
44 |
+
source = ColumnDataSource(data=dict(
|
45 |
+
x = subset['x'],
|
46 |
+
y = subset['y'],
|
47 |
+
label = subset['label'],
|
48 |
+
img = subset['img']
|
49 |
+
))
|
50 |
+
color = color_mapping[label]
|
51 |
+
if marker == "circle":
|
52 |
+
fig.circle('x', 'y', size=10, source=source,
|
53 |
+
fill_color=color, line_color=color,
|
54 |
+
legend_label=f"{label} (vanilla)")
|
55 |
+
elif marker == "square":
|
56 |
+
fig.square('x', 'y', size=10, source=source,
|
57 |
+
fill_alpha=0, line_color=color,
|
58 |
+
legend_label=f"{label} (v2)")
|
59 |
|
60 |
+
def main():
|
61 |
+
config_style()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
st.markdown('<h2 class="sub-title">Carga y reducci贸n dimensional</h2>', unsafe_allow_html=True)
|
|
|
64 |
|
65 |
+
# Cargar ambas versiones de los embeddings
|
66 |
+
df_vanilla = pd.read_csv("data/donut_de_Rodrigo_merit_secret_all_embeddings.csv")
|
67 |
+
df_v2 = pd.read_csv("data/donut_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
# Agregar una columna para identificar la versi贸n
|
70 |
+
df_vanilla["version"] = "vanilla"
|
71 |
+
df_v2["version"] = "v2"
|
72 |
|
73 |
+
# Se asume que ambas versiones tienen columnas de embedding que comienzan con "dim_"
|
74 |
+
embedding_cols = [col for col in df_vanilla.columns if col.startswith("dim_")]
|
75 |
|
76 |
+
# Combinar ambos dataframes para que la reducci贸n se aplique sobre el conjunto completo
|
77 |
+
df_combined = pd.concat([df_vanilla, df_v2], ignore_index=True)
|
|
|
|
|
|
|
78 |
|
79 |
+
# Selecci贸n del m茅todo de reducci贸n dimensional
|
80 |
+
reduction_method = st.selectbox("Seleccione m茅todo de reducci贸n:", options=["PCA", "t-SNE"])
|
81 |
+
all_embeddings = df_combined[embedding_cols].values
|
82 |
+
if reduction_method == "PCA":
|
83 |
+
reducer = PCA(n_components=2)
|
84 |
+
else:
|
85 |
+
reducer = TSNE(n_components=2, random_state=42, perplexity=30, learning_rate=200)
|
86 |
+
reduced = reducer.fit_transform(all_embeddings)
|
87 |
+
|
88 |
+
# Asignar las coordenadas resultantes al dataframe combinado
|
89 |
+
df_combined['x'] = reduced[:, 0]
|
90 |
+
df_combined['y'] = reduced[:, 1]
|
91 |
+
|
92 |
+
# Separar nuevamente seg煤n la versi贸n
|
93 |
+
df_vanilla_trans = df_combined[df_combined["version"] == "vanilla"].copy()
|
94 |
+
df_v2_trans = df_combined[df_combined["version"] == "v2"].copy()
|
95 |
+
|
96 |
+
# Obtener los subsets 煤nicos de cada versi贸n
|
97 |
+
unique_labels_vanilla = sorted(df_vanilla_trans['label'].unique().tolist())
|
98 |
+
unique_labels_v2 = sorted(df_v2_trans['label'].unique().tolist())
|
99 |
+
|
100 |
+
# Selectores para filtrar los subsets a visualizar
|
101 |
+
selected_labels_vanilla = st.multiselect("Seleccione subsets para visualizar (Vanilla):",
|
102 |
+
options=unique_labels_vanilla,
|
103 |
+
default=unique_labels_vanilla)
|
104 |
+
selected_labels_v2 = st.multiselect("Seleccione subsets para visualizar (v2):",
|
105 |
+
options=unique_labels_v2,
|
106 |
+
default=unique_labels_v2)
|
107 |
+
|
108 |
+
# Generar mapeos de colores espec铆ficos:
|
109 |
+
# Para vanilla se usar谩n tonos de rojo (paleta Reds9)
|
110 |
+
num_vanilla = len(selected_labels_vanilla)
|
111 |
+
if num_vanilla <= 9:
|
112 |
+
red_palette = Reds9[:num_vanilla]
|
113 |
+
else:
|
114 |
+
red_palette = (Reds9 * ((num_vanilla // 9) + 1))[:num_vanilla]
|
115 |
+
color_mapping_vanilla = {label: red_palette[i] for i, label in enumerate(sorted(selected_labels_vanilla))}
|
116 |
|
117 |
+
# Para v2 se usar谩n tonos de azul (paleta Blues9)
|
118 |
+
num_v2 = len(selected_labels_v2)
|
119 |
+
if num_v2 <= 9:
|
120 |
+
blue_palette = Blues9[:num_v2]
|
121 |
else:
|
122 |
+
blue_palette = (Blues9 * ((num_v2 // 9) + 1))[:num_v2]
|
123 |
+
color_mapping_v2 = {label: blue_palette[i] for i, label in enumerate(sorted(selected_labels_v2))}
|
124 |
|
125 |
+
# Crear una figura 煤nica para ambas versiones
|
126 |
+
fig = figure(width=600, height=600, tooltips=TOOLTIPS,
|
127 |
+
title="Donut: Vanilla (c铆rculos, rojos) vs v2 (cuadrados, azules)")
|
128 |
|
129 |
+
# Agregar datos de la versi贸n vanilla (c铆rculos con tonos de rojo)
|
130 |
+
add_dataset_to_fig(fig, df_vanilla_trans, selected_labels_vanilla,
|
131 |
+
marker="circle", color_mapping=color_mapping_vanilla)
|
132 |
+
# Agregar datos de la versi贸n v2 (cuadrados sin relleno, tonos de azul)
|
133 |
+
add_dataset_to_fig(fig, df_v2_trans, selected_labels_v2,
|
134 |
+
marker="square", color_mapping=color_mapping_v2)
|
135 |
|
136 |
+
fig.legend.location = "top_right"
|
137 |
+
fig.legend.click_policy = "hide"
|
138 |
|
139 |
+
st.bokeh_chart(fig)
|
140 |
+
|
141 |
+
if __name__ == "__main__":
|
142 |
+
main()
|
|
|
|
|
|