Spaces:
Running
Running
Commit
路
a7b0777
1
Parent(s):
4dc18ef
Read Donut Files Properly
Browse files
app.py
CHANGED
@@ -41,15 +41,21 @@ def config_style():
|
|
41 |
st.markdown('<h1 class="main-title">Merit Embeddings 馃帓馃搩馃弳</h1>', unsafe_allow_html=True)
|
42 |
|
43 |
def load_embeddings(model, version, embedding_prefix):
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
if model == "Donut":
|
45 |
-
df_real = pd.read_csv(f"data/
|
46 |
df_par = pd.read_csv(f"data/donut_{version}_de_Rodrigo_merit_es-digital-paragraph-degradation-seq_{embedding_prefix}embeddings.csv")
|
47 |
-
df_line = pd.read_csv(f"data/
|
48 |
-
df_seq = pd.read_csv(f"data/
|
49 |
-
df_rot = pd.read_csv(f"data/
|
50 |
-
df_zoom = pd.read_csv(f"data/
|
51 |
-
df_render = pd.read_csv(f"data/
|
52 |
-
df_pretratrained = pd.read_csv(f"data/
|
53 |
|
54 |
# Asignar etiquetas de versi贸n
|
55 |
df_real["version"] = "real"
|
@@ -540,9 +546,9 @@ def run_model(model_name):
|
|
540 |
# Selector para el m茅todo de c贸mputo del embedding
|
541 |
embedding_computation = st.selectbox("驴C贸mo se computa el embedding?", options=["weighted", "averaged"], key=f"embedding_method_{model_name}")
|
542 |
# Se asigna el prefijo correspondiente
|
543 |
-
prefijo_embedding = "weighted_" if embedding_computation == "weighted" else "averaged_"
|
544 |
|
545 |
-
embeddings = load_embeddings(model_name, version,
|
546 |
if embeddings is None:
|
547 |
return
|
548 |
|
|
|
41 |
st.markdown('<h1 class="main-title">Merit Embeddings 馃帓馃搩馃弳</h1>', unsafe_allow_html=True)
|
42 |
|
43 |
def load_embeddings(model, version, embedding_prefix):
|
44 |
+
|
45 |
+
if embedding_prefix == "averaged":
|
46 |
+
weight = ""
|
47 |
+
elif embedding_prefix == "weighted":
|
48 |
+
weight = "0.5_"
|
49 |
+
|
50 |
if model == "Donut":
|
51 |
+
df_real = pd.read_csv(f"data/{model.lower()}/{version}/{embedding_prefix}/de_Rodrigo_merit_secret_all_{weight}embeddings.csv")
|
52 |
df_par = pd.read_csv(f"data/donut_{version}_de_Rodrigo_merit_es-digital-paragraph-degradation-seq_{embedding_prefix}embeddings.csv")
|
53 |
+
df_line = pd.read_csv(f"data/{model.lower()}/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-line-degradation-seq_{weight}embeddings.csv")
|
54 |
+
df_seq = pd.read_csv(f"data/{model.lower()}/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-seq_{weight}embeddings.csv")
|
55 |
+
df_rot = pd.read_csv(f"data/{model.lower()}/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-rotation-degradation-seq_{weight}embeddings.csv")
|
56 |
+
df_zoom = pd.read_csv(f"data/{model.lower()}/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-zoom-degradation-seq_{weight}embeddings.csv")
|
57 |
+
df_render = pd.read_csv(f"data/{model.lower()}/{version}/{embedding_prefix}/de_Rodrigo_merit_es-render-seq_{weight}embeddings.csv")
|
58 |
+
df_pretratrained = pd.read_csv(f"data/{model.lower()}/{version}/{embedding_prefix}/de_Rodrigo_merit_aux_IIT-CDIP_{weight}embeddings.csv")
|
59 |
|
60 |
# Asignar etiquetas de versi贸n
|
61 |
df_real["version"] = "real"
|
|
|
546 |
# Selector para el m茅todo de c贸mputo del embedding
|
547 |
embedding_computation = st.selectbox("驴C贸mo se computa el embedding?", options=["weighted", "averaged"], key=f"embedding_method_{model_name}")
|
548 |
# Se asigna el prefijo correspondiente
|
549 |
+
# prefijo_embedding = "weighted_" if embedding_computation == "weighted" else "averaged_"
|
550 |
|
551 |
+
embeddings = load_embeddings(model_name, version, embedding_computation)
|
552 |
if embeddings is None:
|
553 |
return
|
554 |
|