Spaces:
Sleeping
Sleeping
Commit
路
ce05869
1
Parent(s):
789e1f0
Scatter Plot with Regression
Browse files
app.py
CHANGED
@@ -2,13 +2,14 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
from bokeh.plotting import figure
|
5 |
-
from bokeh.models import ColumnDataSource, DataTable, TableColumn, CustomJS, Select, Button
|
6 |
from bokeh.layouts import column
|
7 |
from bokeh.palettes import Reds9, Blues9, Oranges9, Purples9, Greys9, BuGn9, Greens9
|
8 |
from sklearn.decomposition import PCA
|
9 |
from sklearn.manifold import TSNE
|
10 |
import io
|
11 |
import ot
|
|
|
12 |
|
13 |
TOOLTIPS = """
|
14 |
<div>
|
@@ -81,7 +82,9 @@ def reducer_selector(df_combined, embedding_cols):
|
|
81 |
if reduction_method == "PCA":
|
82 |
reducer = PCA(n_components=2)
|
83 |
else:
|
84 |
-
|
|
|
|
|
85 |
return reducer.fit_transform(all_embeddings)
|
86 |
|
87 |
# Funci贸n para agregar datos reales (por cada etiqueta)
|
@@ -330,7 +333,86 @@ def run_model(model_name):
|
|
330 |
|
331 |
centers_real = calculate_cluster_centers(dfs_reduced["real"], unique_subsets["real"])
|
332 |
|
333 |
-
df_distances = compute_wasserstein_distances_synthetic_individual(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
data_table, df_table, source_table = create_table(df_distances)
|
335 |
|
336 |
real_subset_names = list(df_table.columns[1:])
|
@@ -380,7 +462,7 @@ def run_model(model_name):
|
|
380 |
df_table.to_excel(buffer, index=False)
|
381 |
buffer.seek(0)
|
382 |
|
383 |
-
layout = column(fig, column(real_select, reset_button, data_table))
|
384 |
st.bokeh_chart(layout, use_container_width=True)
|
385 |
|
386 |
st.download_button(
|
@@ -391,6 +473,7 @@ def run_model(model_name):
|
|
391 |
key=f"download_button_excel_{model_name}"
|
392 |
)
|
393 |
|
|
|
394 |
def main():
|
395 |
config_style()
|
396 |
tabs = st.tabs(["Donut", "Idefics2"])
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
from bokeh.plotting import figure
|
5 |
+
from bokeh.models import ColumnDataSource, DataTable, TableColumn, CustomJS, Select, Button, HoverTool
|
6 |
from bokeh.layouts import column
|
7 |
from bokeh.palettes import Reds9, Blues9, Oranges9, Purples9, Greys9, BuGn9, Greens9
|
8 |
from sklearn.decomposition import PCA
|
9 |
from sklearn.manifold import TSNE
|
10 |
import io
|
11 |
import ot
|
12 |
+
from sklearn.linear_model import LinearRegression
|
13 |
|
14 |
TOOLTIPS = """
|
15 |
<div>
|
|
|
82 |
if reduction_method == "PCA":
|
83 |
reducer = PCA(n_components=2)
|
84 |
else:
|
85 |
+
perplexity_val = st.number_input("Perplexity", min_value=5, max_value=50, value=30, step=1)
|
86 |
+
learning_rate_val = st.number_input("Learning Rate", min_value=10, max_value=1000, value=200, step=10)
|
87 |
+
reducer = TSNE(n_components=2, random_state=42, perplexity=perplexity_val, learning_rate=learning_rate_val)
|
88 |
return reducer.fit_transform(all_embeddings)
|
89 |
|
90 |
# Funci贸n para agregar datos reales (por cada etiqueta)
|
|
|
333 |
|
334 |
centers_real = calculate_cluster_centers(dfs_reduced["real"], unique_subsets["real"])
|
335 |
|
336 |
+
df_distances = compute_wasserstein_distances_synthetic_individual(
|
337 |
+
dfs_reduced["synthetic"],
|
338 |
+
dfs_reduced["real"],
|
339 |
+
unique_subsets["real"]
|
340 |
+
)
|
341 |
+
|
342 |
+
# --- Scatter plot usando f1-donut.csv ---
|
343 |
+
try:
|
344 |
+
df_f1 = pd.read_csv("data/f1-donut.csv", sep=';', index_col=0)
|
345 |
+
except Exception as e:
|
346 |
+
st.error(f"Error loading f1-donut.csv: {e}")
|
347 |
+
return
|
348 |
+
|
349 |
+
# Extraer los valores globales para cada fuente (sin promediar: 10 valores por fuente)
|
350 |
+
global_distances = {}
|
351 |
+
for idx in df_distances.index:
|
352 |
+
if idx.startswith("Global"):
|
353 |
+
# Ejemplo: "Global (es-digital-seq)"
|
354 |
+
source = idx.split("(")[1].rstrip(")")
|
355 |
+
global_distances[source] = df_distances.loc[idx].values
|
356 |
+
|
357 |
+
# Reutilizaci贸n de los c贸digos de colores
|
358 |
+
source_colors = {
|
359 |
+
"es-digital-paragraph-degradation-seq": "blue",
|
360 |
+
"es-digital-line-degradation-seq": "green",
|
361 |
+
"es-digital-seq": "red",
|
362 |
+
"es-digital-zoom-degradation-seq": "orange",
|
363 |
+
"es-digital-rotation-degradation-seq": "purple",
|
364 |
+
"es-digital-rotation-zoom-degradation-seq": "brown",
|
365 |
+
"es-render-seq": "cyan"
|
366 |
+
}
|
367 |
+
|
368 |
+
scatter_fig = figure(width=600, height=600, tools="pan,wheel_zoom,reset,save", title="Scatter Plot: Wasserstein vs F1")
|
369 |
+
# Variables para la regresi贸n global
|
370 |
+
all_x = []
|
371 |
+
all_y = []
|
372 |
+
|
373 |
+
# Se plotea cada fuente y se acumulan los datos para la regresi贸n global
|
374 |
+
for source in df_f1.columns:
|
375 |
+
if source in global_distances:
|
376 |
+
x_vals = global_distances[source] # 10 valores (uno por colegio)
|
377 |
+
y_vals = df_f1[source].values # 10 valores de f1, en el mismo orden
|
378 |
+
data = {"x": x_vals, "y": y_vals, "Fuente": [source] * len(x_vals)}
|
379 |
+
cds = ColumnDataSource(data=data)
|
380 |
+
scatter_fig.circle('x', 'y', size=8, alpha=0.7, source=cds,
|
381 |
+
fill_color=source_colors.get(source, "gray"),
|
382 |
+
line_color=source_colors.get(source, "gray"),
|
383 |
+
legend_label=source)
|
384 |
+
all_x.extend(x_vals)
|
385 |
+
all_y.extend(y_vals)
|
386 |
+
|
387 |
+
scatter_fig.xaxis.axis_label = "Wasserstein Distance (Global, por Colegio)"
|
388 |
+
scatter_fig.yaxis.axis_label = "F1 Score"
|
389 |
+
scatter_fig.legend.location = "top_right"
|
390 |
+
|
391 |
+
# Agregar HoverTool para mostrar x, y y la fuente al hacer hover
|
392 |
+
hover_tool = HoverTool(tooltips=[("x", "@x"), ("y", "@y"), ("Fuente", "@Fuente")])
|
393 |
+
scatter_fig.add_tools(hover_tool)
|
394 |
+
# --- Fin scatter plot ---
|
395 |
+
|
396 |
+
# --- Regresi贸n global ---
|
397 |
+
all_x_arr = np.array(all_x).reshape(-1, 1)
|
398 |
+
all_y_arr = np.array(all_y)
|
399 |
+
model_global = LinearRegression().fit(all_x_arr, all_y_arr)
|
400 |
+
slope = model_global.coef_[0]
|
401 |
+
intercept = model_global.intercept_
|
402 |
+
r2 = model_global.score(all_x_arr, all_y_arr)
|
403 |
+
|
404 |
+
# Agregar l铆nea de regresi贸n global al scatter plot
|
405 |
+
x_line = np.linspace(all_x_arr.min(), all_x_arr.max(), 100)
|
406 |
+
y_line = model_global.predict(x_line.reshape(-1, 1))
|
407 |
+
scatter_fig.line(x_line, y_line, line_width=2, line_color="black", legend_label="Global Regression")
|
408 |
+
|
409 |
+
# Mostrar m茅tricas de regresi贸n despu茅s del scatter plot
|
410 |
+
regression_metrics = {"Slope": [slope], "Intercept": [intercept], "R2": [r2]}
|
411 |
+
reg_df = pd.DataFrame(regression_metrics)
|
412 |
+
st.table(reg_df)
|
413 |
+
|
414 |
+
# --- Fin regresi贸n global ---
|
415 |
+
|
416 |
data_table, df_table, source_table = create_table(df_distances)
|
417 |
|
418 |
real_subset_names = list(df_table.columns[1:])
|
|
|
462 |
df_table.to_excel(buffer, index=False)
|
463 |
buffer.seek(0)
|
464 |
|
465 |
+
layout = column(fig, scatter_fig, column(real_select, reset_button, data_table))
|
466 |
st.bokeh_chart(layout, use_container_width=True)
|
467 |
|
468 |
st.download_button(
|
|
|
473 |
key=f"download_button_excel_{model_name}"
|
474 |
)
|
475 |
|
476 |
+
|
477 |
def main():
|
478 |
config_style()
|
479 |
tabs = st.tabs(["Donut", "Idefics2"])
|