Spaces:
Running
Running
Commit
路
f24148c
1
Parent(s):
f4417fd
Include Weight Selector for Weighted Computation
Browse files
app.py
CHANGED
|
@@ -14,7 +14,7 @@ from sklearn.linear_model import LinearRegression
|
|
| 14 |
|
| 15 |
N_COMPONENTS = 2
|
| 16 |
TSNE_NEIGHBOURS = 150
|
| 17 |
-
WEIGHT_FACTOR = 0.05
|
| 18 |
|
| 19 |
TOOLTIPS = """
|
| 20 |
<div>
|
|
@@ -28,6 +28,7 @@ TOOLTIPS = """
|
|
| 28 |
"""
|
| 29 |
|
| 30 |
def config_style():
|
|
|
|
| 31 |
st.markdown("""
|
| 32 |
<style>
|
| 33 |
.main-title { font-size: 50px; color: #4CAF50; text-align: center; }
|
|
@@ -533,13 +534,19 @@ def optimize_tsne_params(df_combined, embedding_cols, df_f1, distance_metric):
|
|
| 533 |
def run_model(model_name):
|
| 534 |
version = st.selectbox("Select Model Version:", options=["vanilla", "finetuned_real"], key=f"version_{model_name}")
|
| 535 |
# Selector para el m茅todo de c贸mputo del embedding
|
| 536 |
-
embedding_computation = st.selectbox("驴C贸mo se computa el embedding?", options=["
|
| 537 |
# Se asigna el prefijo correspondiente
|
| 538 |
|
| 539 |
if embedding_computation == "weighted":
|
| 540 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 541 |
else:
|
| 542 |
-
|
| 543 |
|
| 544 |
embeddings = load_embeddings(model_name, version, embedding_computation, weight_factor)
|
| 545 |
if embeddings is None:
|
|
|
|
| 14 |
|
| 15 |
N_COMPONENTS = 2
|
| 16 |
TSNE_NEIGHBOURS = 150
|
| 17 |
+
# WEIGHT_FACTOR = 0.05
|
| 18 |
|
| 19 |
TOOLTIPS = """
|
| 20 |
<div>
|
|
|
|
| 28 |
"""
|
| 29 |
|
| 30 |
def config_style():
|
| 31 |
+
# st.set_page_config(layout="wide")
|
| 32 |
st.markdown("""
|
| 33 |
<style>
|
| 34 |
.main-title { font-size: 50px; color: #4CAF50; text-align: center; }
|
|
|
|
| 534 |
def run_model(model_name):
|
| 535 |
version = st.selectbox("Select Model Version:", options=["vanilla", "finetuned_real"], key=f"version_{model_name}")
|
| 536 |
# Selector para el m茅todo de c贸mputo del embedding
|
| 537 |
+
embedding_computation = st.selectbox("驴C贸mo se computa el embedding?", options=["averaged", "weighted"], key=f"embedding_method_{model_name}")
|
| 538 |
# Se asigna el prefijo correspondiente
|
| 539 |
|
| 540 |
if embedding_computation == "weighted":
|
| 541 |
+
selected_weight_factor = st.selectbox(
|
| 542 |
+
"Seleccione el Weight Factor",
|
| 543 |
+
options=[0.05, 0.1, 0.25, 0.5],
|
| 544 |
+
index=0, # 铆ndice 1 para que por defecto sea 0.05
|
| 545 |
+
key=f"weight_factor_{model_name}"
|
| 546 |
+
)
|
| 547 |
+
weight_factor = f"{selected_weight_factor}_"
|
| 548 |
else:
|
| 549 |
+
weight_factor = ""
|
| 550 |
|
| 551 |
embeddings = load_embeddings(model_name, version, embedding_computation, weight_factor)
|
| 552 |
if embeddings is None:
|