Spaces:
Running
Running
Commit
路
f872421
1
Parent(s):
97ec291
Refactor Code
Browse files
app.py
CHANGED
@@ -17,6 +17,7 @@ TOOLTIPS = """
|
|
17 |
</div>
|
18 |
"""
|
19 |
|
|
|
20 |
def config_style():
|
21 |
st.markdown("""
|
22 |
<style>
|
@@ -25,17 +26,43 @@ def config_style():
|
|
25 |
.custom-text { font-size: 18px; line-height: 1.5; }
|
26 |
</style>
|
27 |
""", unsafe_allow_html=True)
|
28 |
-
st.markdown('<h1 class="main-title">Merit
|
29 |
-
st.markdown('<h2 class="sub-title">Donut
|
30 |
st.markdown(
|
31 |
"""
|
32 |
<p class="custom-text">
|
33 |
Se cargan ambas versiones de los embeddings y se aplica una reducci贸n dimensional sobre el conjunto combinado.
|
34 |
-
Los puntos de la versi贸n
|
35 |
-
y los de la
|
36 |
</p>
|
37 |
""", unsafe_allow_html=True)
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
def add_dataset_to_fig(fig, df, selected_labels, marker, color_mapping):
|
40 |
for label in selected_labels:
|
41 |
subset = df[df['label'] == label]
|
@@ -53,90 +80,119 @@ def add_dataset_to_fig(fig, df, selected_labels, marker, color_mapping):
|
|
53 |
fill_color=color, line_color=color,
|
54 |
legend_label=f"{label} (Real)")
|
55 |
elif marker == "square":
|
56 |
-
fig.square('x', 'y', size=
|
57 |
-
fill_alpha=0, line_color=color,
|
58 |
legend_label=f"{label} (Sint茅tico)")
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
st.markdown('<h2 class="sub-title">Carga y reducci贸n dimensional</h2>', unsafe_allow_html=True)
|
64 |
-
|
65 |
-
# Cargar ambas versiones de los embeddings
|
66 |
-
df_vanilla = pd.read_csv("data/donut_de_Rodrigo_merit_secret_all_embeddings.csv")
|
67 |
-
df_v2 = pd.read_csv("data/donut_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
|
68 |
-
|
69 |
-
# Agregar una columna para identificar la versi贸n
|
70 |
-
df_vanilla["version"] = "vanilla"
|
71 |
-
df_v2["version"] = "v2"
|
72 |
-
|
73 |
-
# Se asume que ambas versiones tienen columnas de embedding que comienzan con "dim_"
|
74 |
-
embedding_cols = [col for col in df_vanilla.columns if col.startswith("dim_")]
|
75 |
-
|
76 |
-
# Combinar ambos dataframes para que la reducci贸n se aplique sobre el conjunto completo
|
77 |
-
df_combined = pd.concat([df_vanilla, df_v2], ignore_index=True)
|
78 |
|
79 |
-
#
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
reducer = PCA(n_components=2)
|
84 |
else:
|
85 |
-
|
86 |
-
|
87 |
|
88 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
df_combined['x'] = reduced[:, 0]
|
90 |
df_combined['y'] = reduced[:, 1]
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
df_v2_trans = df_combined[df_combined["version"] == "v2"].copy()
|
95 |
|
96 |
# Obtener los subsets 煤nicos de cada versi贸n
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
selected_labels_v2 = st.multiselect("Seleccione subsets para visualizar (Sint茅tico):",
|
105 |
-
options=unique_labels_v2,
|
106 |
-
default=unique_labels_v2)
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
color_mapping_vanilla = {label: red_palette[i] for i, label in enumerate(sorted(selected_labels_vanilla))}
|
116 |
|
117 |
-
|
118 |
-
num_v2 = len(selected_labels_v2)
|
119 |
-
if num_v2 <= 9:
|
120 |
-
blue_palette = Blues9[:num_v2]
|
121 |
-
else:
|
122 |
-
blue_palette = (Blues9 * ((num_v2 // 9) + 1))[:num_v2]
|
123 |
-
color_mapping_v2 = {label: blue_palette[i] for i, label in enumerate(sorted(selected_labels_v2))}
|
124 |
|
125 |
-
|
126 |
-
fig = figure(width=600, height=600, tooltips=TOOLTIPS,
|
127 |
-
title="Donut: Muestras Reales (c铆rculos, rojos) vs Muestras Sint茅ticas (cuadrados, azules)")
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
marker="circle", color_mapping=color_mapping_vanilla)
|
132 |
-
# Agregar datos de la versi贸n v2 (cuadrados sin relleno, tonos de azul)
|
133 |
-
add_dataset_to_fig(fig, df_v2_trans, selected_labels_v2,
|
134 |
-
marker="square", color_mapping=color_mapping_v2)
|
135 |
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
st.bokeh_chart(
|
140 |
|
141 |
if __name__ == "__main__":
|
142 |
main()
|
|
|
17 |
</div>
|
18 |
"""
|
19 |
|
20 |
+
|
21 |
def config_style():
|
22 |
st.markdown("""
|
23 |
<style>
|
|
|
26 |
.custom-text { font-size: 18px; line-height: 1.5; }
|
27 |
</style>
|
28 |
""", unsafe_allow_html=True)
|
29 |
+
st.markdown('<h1 class="main-title">Merit Embeddings 馃帓馃搩馃弳</h1>', unsafe_allow_html=True)
|
30 |
+
st.markdown('<h2 class="sub-title">Donut 馃</h2>', unsafe_allow_html=True)
|
31 |
st.markdown(
|
32 |
"""
|
33 |
<p class="custom-text">
|
34 |
Se cargan ambas versiones de los embeddings y se aplica una reducci贸n dimensional sobre el conjunto combinado.
|
35 |
+
Los puntos de la versi贸n real se muestran como <strong>c铆rculos</strong> (tonos de rojo)
|
36 |
+
y los de la es_digital_seq como <strong>cuadrados</strong> (tonos de azul).
|
37 |
</p>
|
38 |
""", unsafe_allow_html=True)
|
39 |
|
40 |
+
|
41 |
+
def load_embeddings():
|
42 |
+
df_real = pd.read_csv("data/donut_de_Rodrigo_merit_secret_all_embeddings.csv")
|
43 |
+
df_es_digital_seq = pd.read_csv("data/donut_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
|
44 |
+
|
45 |
+
embeddings = {
|
46 |
+
"real": df_real,
|
47 |
+
"es-digital-seq": df_es_digital_seq
|
48 |
+
}
|
49 |
+
|
50 |
+
return embeddings
|
51 |
+
|
52 |
+
|
53 |
+
def reducer_selector(df_combined, embedding_cols):
|
54 |
+
|
55 |
+
reduction_method = st.selectbox("Seleccione m茅todo de reducci贸n:", options=["PCA", "t-SNE"])
|
56 |
+
all_embeddings = df_combined[embedding_cols].values
|
57 |
+
if reduction_method == "PCA":
|
58 |
+
reducer = PCA(n_components=2)
|
59 |
+
else:
|
60 |
+
reducer = TSNE(n_components=2, random_state=42, perplexity=30, learning_rate=200)
|
61 |
+
reduced = reducer.fit_transform(all_embeddings)
|
62 |
+
|
63 |
+
return reduced
|
64 |
+
|
65 |
+
|
66 |
def add_dataset_to_fig(fig, df, selected_labels, marker, color_mapping):
|
67 |
for label in selected_labels:
|
68 |
subset = df[df['label'] == label]
|
|
|
80 |
fill_color=color, line_color=color,
|
81 |
legend_label=f"{label} (Real)")
|
82 |
elif marker == "square":
|
83 |
+
fig.square('x', 'y', size=4, source=source, fill_color=color, line_color=color,
|
|
|
84 |
legend_label=f"{label} (Sint茅tico)")
|
85 |
|
86 |
+
|
87 |
+
def get_color_maps(selected_subsets: dict):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
# real
|
90 |
+
num_real = len(selected_subsets["real"])
|
91 |
+
if num_real <= 9:
|
92 |
+
red_palette = Reds9[:num_real]
|
|
|
93 |
else:
|
94 |
+
red_palette = (Reds9 * ((num_real // 9) + 1))[:num_real]
|
95 |
+
color_mapping_real = {label: red_palette[i] for i, label in enumerate(sorted(selected_subsets["real"]))}
|
96 |
|
97 |
+
# es-digital-seq
|
98 |
+
num_es_digital_seq = len(selected_subsets["es-digital-seq"])
|
99 |
+
if num_es_digital_seq <= 9:
|
100 |
+
blue_palette = Blues9[:num_es_digital_seq]
|
101 |
+
else:
|
102 |
+
blue_palette = (Blues9 * ((num_es_digital_seq // 9) + 1))[:num_es_digital_seq]
|
103 |
+
color_mapping_es_digital_seq = {label: blue_palette[i] for i, label in enumerate(sorted(selected_subsets["es-digital-seq"]))}
|
104 |
+
|
105 |
+
# Gather color maps
|
106 |
+
color_maps = {
|
107 |
+
"real": color_mapping_real,
|
108 |
+
"es-digital-seq": color_mapping_es_digital_seq
|
109 |
+
}
|
110 |
+
|
111 |
+
return color_maps
|
112 |
+
|
113 |
+
|
114 |
+
def split_versions(df_combined, reduced):
|
115 |
+
|
116 |
df_combined['x'] = reduced[:, 0]
|
117 |
df_combined['y'] = reduced[:, 1]
|
118 |
+
|
119 |
+
df_real_reduced = df_combined[df_combined["version"] == "real"].copy()
|
120 |
+
df_es_digital_seq_reduced = df_combined[df_combined["version"] == "es_digital_seq"].copy()
|
|
|
121 |
|
122 |
# Obtener los subsets 煤nicos de cada versi贸n
|
123 |
+
unique_subsets_real = sorted(df_real_reduced['label'].unique().tolist())
|
124 |
+
unique_subsets_es_digital_seq = sorted(df_es_digital_seq_reduced['label'].unique().tolist())
|
125 |
+
|
126 |
+
unique_subsets = {
|
127 |
+
"real": unique_subsets_real,
|
128 |
+
"es-digital-seq": unique_subsets_es_digital_seq,
|
129 |
+
}
|
130 |
+
|
131 |
+
dfs_reduced = {
|
132 |
+
"real": df_real_reduced,
|
133 |
+
"es-digital-seq": df_es_digital_seq_reduced,
|
134 |
+
}
|
135 |
+
|
136 |
+
return dfs_reduced, unique_subsets
|
137 |
+
|
138 |
+
|
139 |
+
def subset_selectors(unique_subsets: dict):
|
140 |
+
|
141 |
+
selected_subsets_real = st.multiselect("Seleccione subsets para visualizar (Real):",
|
142 |
+
options=unique_subsets["real"],
|
143 |
+
default=unique_subsets["real"])
|
144 |
+
selected_subsets_es_digital_seq = st.multiselect("Seleccione subsets para visualizar (Sint茅tico):",
|
145 |
+
options=unique_subsets["es-digital-seq"],
|
146 |
+
default=unique_subsets["es-digital-seq"])
|
147 |
+
|
148 |
+
selected_subsets = {
|
149 |
+
"real": selected_subsets_real,
|
150 |
+
"es-digital-seq": selected_subsets_es_digital_seq
|
151 |
+
}
|
152 |
+
|
153 |
+
return selected_subsets
|
154 |
+
|
155 |
+
|
156 |
+
def create_figure(dfs_reduced, selected_subsets: dict, color_maps: dict):
|
157 |
+
|
158 |
+
fig = figure(width=600, height=600, tooltips=TOOLTIPS,
|
159 |
+
title="")
|
160 |
|
161 |
+
add_dataset_to_fig(fig, dfs_reduced["real"], selected_subsets["real"],
|
162 |
+
marker="circle", color_mapping=color_maps["real"])
|
163 |
+
add_dataset_to_fig(fig, dfs_reduced["es-digital-seq"], selected_subsets["es-digital-seq"],
|
164 |
+
marker="square", color_mapping=color_maps["es-digital-seq"])
|
|
|
|
|
|
|
165 |
|
166 |
+
fig.legend.location = "top_right"
|
167 |
+
fig.legend.click_policy = "hide"
|
168 |
+
|
169 |
+
return fig
|
170 |
+
|
171 |
+
|
172 |
+
def main():
|
|
|
173 |
|
174 |
+
config_style()
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
+
embeddings_dfs = load_embeddings()
|
|
|
|
|
177 |
|
178 |
+
embeddings_dfs["real"]["version"] = "real"
|
179 |
+
embeddings_dfs["es-digital-seq"]["version"] = "es_digital_seq"
|
|
|
|
|
|
|
|
|
180 |
|
181 |
+
embedding_cols = [col for col in embeddings_dfs["real"].columns if col.startswith("dim_")]
|
182 |
+
|
183 |
+
# Combine dataframes to apply method reduction
|
184 |
+
df_combined = pd.concat([embeddings_dfs["real"], embeddings_dfs["es-digital-seq"]], ignore_index=True)
|
185 |
+
|
186 |
+
reduced = reducer_selector(df_combined, embedding_cols)
|
187 |
+
|
188 |
+
# Split back the different versions
|
189 |
+
dfs_reduced, unique_subsets = split_versions(df_combined, reduced)
|
190 |
+
|
191 |
+
selected_subsets = subset_selectors(unique_subsets)
|
192 |
+
color_maps = get_color_maps(selected_subsets)
|
193 |
+
figure = create_figure(dfs_reduced, selected_subsets, color_maps)
|
194 |
|
195 |
+
st.bokeh_chart(figure)
|
196 |
|
197 |
if __name__ == "__main__":
|
198 |
main()
|