Spaces:
Running
Running
Commit
·
ff7de4b
1
Parent(s):
ce4ccf6
Improve Data Visualization
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import numpy as np
|
|
4 |
from bokeh.plotting import figure
|
5 |
from bokeh.models import ColumnDataSource, DataTable, TableColumn, CustomJS, Select, Button, HoverTool, LinearColorMapper, ColorBar, FuncTickFormatter, FixedTicker
|
6 |
from bokeh.layouts import column
|
7 |
-
from bokeh.palettes import Reds9, Blues9, Oranges9, Purples9, Greys9, BuGn9, Greens9
|
8 |
from sklearn.decomposition import PCA
|
9 |
from sklearn.manifold import TSNE, trustworthiness
|
10 |
from sklearn.metrics import pairwise_distances
|
@@ -14,6 +14,8 @@ from sklearn.linear_model import LinearRegression
|
|
14 |
from scipy.stats import binned_statistic_2d
|
15 |
import json
|
16 |
import itertools
|
|
|
|
|
17 |
|
18 |
|
19 |
N_COMPONENTS = 3
|
@@ -1041,6 +1043,17 @@ def run_model(model_name):
|
|
1041 |
|
1042 |
# -------------------------------------------------------------------------
|
1043 |
# 4. Cálculo de distancias y scatter plot: Distance vs F1 (usando PC1 y PC2 globales)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1044 |
real_labels_new = sorted(df_all["real"]['label'].unique().tolist())
|
1045 |
df_distances_new = compute_cluster_distances_synthetic_individual(
|
1046 |
df_all["synthetic"],
|
@@ -1144,11 +1157,15 @@ def run_model(model_name):
|
|
1144 |
selected_feature = st.selectbox("Select heatmap feature:",
|
1145 |
options=feature_options, key=f"heatmap_{model_name}")
|
1146 |
select_extra_dataset_hm = st.selectbox("Select a dataset:",
|
1147 |
-
options=
|
1148 |
|
1149 |
# Definir el rango de posiciones (x, y)
|
1150 |
-
x_min, x_max = df_heatmap['x'].min(), df_heatmap['x'].max()
|
1151 |
-
y_min, y_max = df_heatmap['y'].min(), df_heatmap['y'].max()
|
|
|
|
|
|
|
|
|
1152 |
|
1153 |
grid_size = 50
|
1154 |
x_bins = np.linspace(x_min, x_max, grid_size + 1)
|
@@ -1177,7 +1194,15 @@ def run_model(model_name):
|
|
1177 |
# Transponer la matriz para alinear correctamente los ejes
|
1178 |
heatmap_data = heat_stat.T
|
1179 |
|
1180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1181 |
|
1182 |
heatmap_fig = figure(title=f"Heatmap de '{selected_feature}'",
|
1183 |
x_range=(x_min, x_max), y_range=(y_min, y_max),
|
@@ -1223,7 +1248,7 @@ def run_model(model_name):
|
|
1223 |
'img': df_extra['img'],
|
1224 |
'label': df_extra['name']
|
1225 |
})
|
1226 |
-
extra_renderer = heatmap_fig.circle('x', 'y', size=
|
1227 |
|
1228 |
hover_tool_points = HoverTool(renderers=[invisible_renderer], tooltips=TOOLTIPS)
|
1229 |
heatmap_fig.add_tools(hover_tool_points)
|
|
|
4 |
from bokeh.plotting import figure
|
5 |
from bokeh.models import ColumnDataSource, DataTable, TableColumn, CustomJS, Select, Button, HoverTool, LinearColorMapper, ColorBar, FuncTickFormatter, FixedTicker
|
6 |
from bokeh.layouts import column
|
7 |
+
from bokeh.palettes import Reds9, Blues9, Oranges9, Purples9, Greys9, BuGn9, Greens9, RdYlGn11, linear_palette
|
8 |
from sklearn.decomposition import PCA
|
9 |
from sklearn.manifold import TSNE, trustworthiness
|
10 |
from sklearn.metrics import pairwise_distances
|
|
|
14 |
from scipy.stats import binned_statistic_2d
|
15 |
import json
|
16 |
import itertools
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
+
import matplotlib.colors as mcolors
|
19 |
|
20 |
|
21 |
N_COMPONENTS = 3
|
|
|
1043 |
|
1044 |
# -------------------------------------------------------------------------
|
1045 |
# 4. Cálculo de distancias y scatter plot: Distance vs F1 (usando PC1 y PC2 globales)
|
1046 |
+
model_options = ["es-digital-paragraph-degradation-seq", "es-digital-line-degradation-seq", "es-digital-seq", "es-digital-rotation-degradation-seq", "es-digital-zoom-degradation-seq", "es-render-seq"]
|
1047 |
+
model_options_with_default = [""]
|
1048 |
+
model_options_with_default.extend(model_options)
|
1049 |
+
|
1050 |
+
|
1051 |
+
# Genera una paleta de 256 colores basada en RdYlGn11
|
1052 |
+
cmap = plt.get_cmap("RdYlGn")
|
1053 |
+
red_green_palette = [mcolors.rgb2hex(cmap(i)) for i in np.linspace(0, 1, 256)]
|
1054 |
+
|
1055 |
+
|
1056 |
+
|
1057 |
real_labels_new = sorted(df_all["real"]['label'].unique().tolist())
|
1058 |
df_distances_new = compute_cluster_distances_synthetic_individual(
|
1059 |
df_all["synthetic"],
|
|
|
1157 |
selected_feature = st.selectbox("Select heatmap feature:",
|
1158 |
options=feature_options, key=f"heatmap_{model_name}")
|
1159 |
select_extra_dataset_hm = st.selectbox("Select a dataset:",
|
1160 |
+
options=model_options_with_default, key=f"heatmap_extra_dataset_{model_name}")
|
1161 |
|
1162 |
# Definir el rango de posiciones (x, y)
|
1163 |
+
# x_min, x_max = df_heatmap['x'].min(), df_heatmap['x'].max()
|
1164 |
+
# y_min, y_max = df_heatmap['y'].min(), df_heatmap['y'].max()
|
1165 |
+
|
1166 |
+
x_min, x_max = -4, 4
|
1167 |
+
y_min, y_max = -4, 4
|
1168 |
+
|
1169 |
|
1170 |
grid_size = 50
|
1171 |
x_bins = np.linspace(x_min, x_max, grid_size + 1)
|
|
|
1194 |
# Transponer la matriz para alinear correctamente los ejes
|
1195 |
heatmap_data = heat_stat.T
|
1196 |
|
1197 |
+
if selected_feature in model_options:
|
1198 |
+
color_mapper = LinearColorMapper(
|
1199 |
+
palette=red_green_palette,
|
1200 |
+
low=0,
|
1201 |
+
high=1,
|
1202 |
+
nan_color='rgba(0, 0, 0, 0)'
|
1203 |
+
)
|
1204 |
+
else:
|
1205 |
+
color_mapper = LinearColorMapper(palette="Viridis256", low=np.nanmin(heatmap_data), high=np.nanmax(heatmap_data), nan_color='rgba(0, 0, 0, 0)')
|
1206 |
|
1207 |
heatmap_fig = figure(title=f"Heatmap de '{selected_feature}'",
|
1208 |
x_range=(x_min, x_max), y_range=(y_min, y_max),
|
|
|
1248 |
'img': df_extra['img'],
|
1249 |
'label': df_extra['name']
|
1250 |
})
|
1251 |
+
extra_renderer = heatmap_fig.circle('x', 'y', size=5, source=source_extra_points, fill_alpha=0, line_alpha=0.5, color="purple")
|
1252 |
|
1253 |
hover_tool_points = HoverTool(renderers=[invisible_renderer], tooltips=TOOLTIPS)
|
1254 |
heatmap_fig.add_tools(hover_tool_points)
|