app.py
CHANGED
@@ -18,13 +18,13 @@ from sklearn.preprocessing import OneHotEncoder
|
|
18 |
def greet_o(name, str2):
|
19 |
return "Hello " + name + "!!" + " str2=" + str2
|
20 |
|
21 |
-
def greet(name,
|
22 |
user_df = {}
|
23 |
|
24 |
# Get user input for numerical columns
|
25 |
user_df['age'] = 22.0
|
26 |
user_df['status'] = 1.0
|
27 |
-
user_df['sex'] = 0.0
|
28 |
user_df['height'] = 60.0
|
29 |
user_df['smokes'] = 1.0
|
30 |
user_df['new_languages'] = 2.0
|
@@ -58,7 +58,7 @@ def greet(name, str2):
|
|
58 |
suggested_name = recommendOne(user_df)
|
59 |
|
60 |
#return "Hello " + name + "!!" + " str2=" + str2
|
61 |
-
return
|
62 |
|
63 |
# reading dataset using panda
|
64 |
tinder_df = pd.read_csv("tinder_data.csv")
|
|
|
18 |
def greet_o(name, str2):
|
19 |
return "Hello " + name + "!!" + " str2=" + str2
|
20 |
|
21 |
+
def greet(name, sex_num):
|
22 |
user_df = {}
|
23 |
|
24 |
# Get user input for numerical columns
|
25 |
user_df['age'] = 22.0
|
26 |
user_df['status'] = 1.0
|
27 |
+
user_df['sex'] = 0.0 + sex_num
|
28 |
user_df['height'] = 60.0
|
29 |
user_df['smokes'] = 1.0
|
30 |
user_df['new_languages'] = 2.0
|
|
|
58 |
suggested_name = recommendOne(user_df)
|
59 |
|
60 |
#return "Hello " + name + "!!" + " str2=" + str2
|
61 |
+
return suggested_name
|
62 |
|
63 |
# reading dataset using panda
|
64 |
tinder_df = pd.read_csv("tinder_data.csv")
|