Go!
Browse files
app.py
CHANGED
@@ -55,7 +55,7 @@ def greet(name, str2):
|
|
55 |
user_df.drop("bio", axis=1, inplace=True)
|
56 |
user_df = pd.concat([user_df, tfidf_df], axis=1)
|
57 |
|
58 |
-
suggested_arr =
|
59 |
|
60 |
return "Hello " + name + "!!" + " str2=" + str2
|
61 |
|
@@ -271,6 +271,27 @@ def recommend(user_df, num_recommendations=5):
|
|
271 |
# Return the user_ids of the recommended users
|
272 |
return tinder_df['username'].iloc[sim_indices]
|
273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
# Setup complete!
|
275 |
|
276 |
iface = gr.Interface(fn=greet, inputs=["text", "text"], outputs="text")
|
|
|
55 |
user_df.drop("bio", axis=1, inplace=True)
|
56 |
user_df = pd.concat([user_df, tfidf_df], axis=1)
|
57 |
|
58 |
+
suggested_arr = recommendOne(user_df)
|
59 |
|
60 |
return "Hello " + name + "!!" + " str2=" + str2
|
61 |
|
|
|
271 |
# Return the user_ids of the recommended users
|
272 |
return tinder_df['username'].iloc[sim_indices]
|
273 |
|
274 |
+
def recommendOne(user_df, num_recommendations=1):
|
275 |
+
|
276 |
+
# Apply SVD to the feature
|
277 |
+
# matrix of the user_df dataframe
|
278 |
+
svd_matrixs = svd.transform(user_df)
|
279 |
+
|
280 |
+
# Calculate the cosine similarity
|
281 |
+
# between the user_df and training set users
|
282 |
+
cosine_sim_new = cosine_similarity(svd_matrixs, svd_matrix)
|
283 |
+
|
284 |
+
# Get the indices of the top
|
285 |
+
# num_recommendations similar users
|
286 |
+
sim_scores = list(enumerate(cosine_sim_new[0]))
|
287 |
+
sim_scores = sorted(sim_scores,
|
288 |
+
key=lambda x: x[1], reverse=True)
|
289 |
+
sim_indices = [i[0] for i in
|
290 |
+
sim_scores[1:num_recommendations+1]]
|
291 |
+
ser = tinder_df['username'].iloc[sim_indices]
|
292 |
+
|
293 |
+
return pd.Series(ser[sim_indices[0]])[0]
|
294 |
+
|
295 |
# Setup complete!
|
296 |
|
297 |
iface = gr.Interface(fn=greet, inputs=["text", "text"], outputs="text")
|