import openai import os import gradio as gr from dotenv import load_dotenv, find_dotenv _ = load_dotenv(find_dotenv()) openai.api_key = os.getenv('OPENAI_API_KEY') def get_completion(prompt, model="gpt-3.5-turbo"): messages = [{"role": "user", "content": prompt}] response = openai.ChatCompletion.create( model=model, messages=messages, temperature=0, # this is the degree of randomness of the model's output ) return response.choices[0].message["content"] def greet(input): prompt = f""" Determine the product or solution, the problem being solved, features, target customer that are being discussed in the \ following text, which is delimited by triple backticks. Then, pretend that you are the target customer. \ State if you would use this product and elaborate on why. Also state if you would pay for it and elaborate on why.\ Format your response as a JSON object with \ 'solution', 'problem', 'features', 'target_customer', 'fg_will_use', 'reason_to_use', 'fg_will_pay', 'reason_to_pay' as the keys.\ Text sample: '''{input}''' """ response = get_completion(prompt) return response #iface = gr.Interface(fn=greet, inputs="text", outputs="text") #iface.launch() #iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entities")], title="NER with dslim/bert-base-NER", description="Find entities using the `dslim/bert-base-NER` model under the hood!", allow_flagging="never", examples=["My name is Andrew and I live in California", "My name is Poli and work at HuggingFace"]) iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Elevator pitch", lines=3)], outputs="text") iface.launch()