debisoft commited on
Commit
c91b5f9
·
1 Parent(s): 06f1b56

1st commit!

Browse files
Files changed (1) hide show
  1. app.py +44 -0
app.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import openai
2
+ import os
3
+ import gradio as gr
4
+ import json
5
+ from dotenv import load_dotenv, find_dotenv
6
+ _ = load_dotenv(find_dotenv())
7
+
8
+
9
+ openai.api_key = os.getenv('OPENAI_API_KEY')
10
+
11
+ def get_completion(prompt, model="gpt-3.5-turbo"):
12
+ messages = [{"role": "user", "content": prompt}]
13
+ response = openai.ChatCompletion.create(
14
+ model=model,
15
+ messages=messages,
16
+ temperature=0, # this is the degree of randomness of the model's output
17
+ )
18
+ return response.choices[0].message["content"]
19
+
20
+ def greet(company, solution, target_customer, problem, features):
21
+
22
+ pitch = f"""
23
+ My company, {company} is developing {solution} to help {target_customer} {problem} with {features}
24
+ """
25
+
26
+ prompt = f"""
27
+ Determine the product or solution, the problem being solved, features, target customer that are being discussed in the \
28
+ following text, which is delimited by triple backticks. Then, pretend that you are the target customer. \
29
+ State if you would use this product and elaborate on why. Also state if you would pay for it and elaborate on why.\
30
+
31
+ Format your response as a JSON object with \
32
+ 'solution', 'problem', 'features', 'target_customer', 'fg_will_use', 'reason_to_use', 'fg_will_pay', 'reason_to_pay' as the keys.\
33
+
34
+ Text sample: '''{pitch}'''
35
+ """
36
+ response = get_completion(prompt)
37
+ return json.dumps(response)
38
+
39
+ #iface = gr.Interface(fn=greet, inputs="text", outputs="text")
40
+ #iface.launch()
41
+
42
+ #iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entities")], title="NER with dslim/bert-base-NER", description="Find entities using the `dslim/bert-base-NER` model under the hood!", allow_flagging="never", examples=["My name is Andrew and I live in California", "My name is Poli and work at HuggingFace"])
43
+ iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Company"), gr.Textbox(label="Solution"), gr.Textbox(label="Target Customer"), gr.Textbox(label="Problem"), gr.Textbox(label="Killer Feture")], outputs="json")
44
+ iface.launch()