import openai import os import gradio as gr import json from dotenv import load_dotenv, find_dotenv _ = load_dotenv(find_dotenv()) openai.api_key = os.getenv('OPENAI_API_KEY') def get_completion(prompt, model="gpt-3.5-turbo"): messages = [{"role": "user", "content": prompt}] response = openai.ChatCompletion.create( model=model, messages=messages, temperature=0, # this is the degree of randomness of the model's output ) return response.choices[0].message["content"] def greet(company, solution, customer, problem, features): respone = company return json.dumps(response) #iface = gr.Interface(fn=greet, inputs="text", outputs="text") #iface.launch() #iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entities")], title="NER with dslim/bert-base-NER", description="Find entities using the `dslim/bert-base-NER` model under the hood!", allow_flagging="never", examples=["My name is Andrew and I live in California", "My name is Poli and work at HuggingFace"]) iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Company"), gr.Textbox(label="Solution"), gr.Textbox(label="Customer"), gr.Textbox(label="Problem"), gr.Textbox(label="Feature")], outputs="json") iface.launch()