Spaces:
Runtime error
Runtime error
| from typing import Dict, Tuple | |
| from tqdm import tqdm | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.utils.data import DataLoader | |
| from torchvision import models, transforms | |
| from torchvision.utils import save_image, make_grid | |
| import matplotlib.pyplot as plt | |
| from matplotlib.animation import FuncAnimation, PillowWriter | |
| import numpy as np | |
| from IPython.display import HTML | |
| from diffusion_utilities import * | |
| openai.api_key = os.getenv('OPENAI_API_KEY') | |
| class ContextUnet(nn.Module): | |
| def __init__(self, in_channels, n_feat=256, n_cfeat=10, height=28): # cfeat - context features | |
| super(ContextUnet, self).__init__() | |
| # number of input channels, number of intermediate feature maps and number of classes | |
| self.in_channels = in_channels | |
| self.n_feat = n_feat | |
| self.n_cfeat = n_cfeat | |
| self.h = height #assume h == w. must be divisible by 4, so 28,24,20,16... | |
| # Initialize the initial convolutional layer | |
| self.init_conv = ResidualConvBlock(in_channels, n_feat, is_res=True) | |
| # Initialize the down-sampling path of the U-Net with two levels | |
| self.down1 = UnetDown(n_feat, n_feat) # down1 #[10, 256, 8, 8] | |
| self.down2 = UnetDown(n_feat, 2 * n_feat) # down2 #[10, 256, 4, 4] | |
| # original: self.to_vec = nn.Sequential(nn.AvgPool2d(7), nn.GELU()) | |
| self.to_vec = nn.Sequential(nn.AvgPool2d((4)), nn.GELU()) | |
| # Embed the timestep and context labels with a one-layer fully connected neural network | |
| self.timeembed1 = EmbedFC(1, 2*n_feat) | |
| self.timeembed2 = EmbedFC(1, 1*n_feat) | |
| self.contextembed1 = EmbedFC(n_cfeat, 2*n_feat) | |
| self.contextembed2 = EmbedFC(n_cfeat, 1*n_feat) | |
| # Initialize the up-sampling path of the U-Net with three levels | |
| self.up0 = nn.Sequential( | |
| nn.ConvTranspose2d(2 * n_feat, 2 * n_feat, self.h//4, self.h//4), | |
| nn.GroupNorm(8, 2 * n_feat), # normalize | |
| nn.ReLU(), | |
| ) | |
| self.up1 = UnetUp(4 * n_feat, n_feat) | |
| self.up2 = UnetUp(2 * n_feat, n_feat) | |
| # Initialize the final convolutional layers to map to the same number of channels as the input image | |
| self.out = nn.Sequential( | |
| nn.Conv2d(2 * n_feat, n_feat, 3, 1, 1), # reduce number of feature maps #in_channels, out_channels, kernel_size, stride=1, padding=0 | |
| nn.GroupNorm(8, n_feat), # normalize | |
| nn.ReLU(), | |
| nn.Conv2d(n_feat, self.in_channels, 3, 1, 1), # map to same number of channels as input | |
| ) | |
| def forward(self, x, t, c=None): | |
| """ | |
| x : (batch, n_feat, h, w) : input image | |
| t : (batch, n_cfeat) : time step | |
| c : (batch, n_classes) : context label | |
| """ | |
| # x is the input image, c is the context label, t is the timestep, context_mask says which samples to block the context on | |
| # pass the input image through the initial convolutional layer | |
| x = self.init_conv(x) | |
| # pass the result through the down-sampling path | |
| down1 = self.down1(x) #[10, 256, 8, 8] | |
| down2 = self.down2(down1) #[10, 256, 4, 4] | |
| # convert the feature maps to a vector and apply an activation | |
| hiddenvec = self.to_vec(down2) | |
| # mask out context if context_mask == 1 | |
| if c is None: | |
| c = torch.zeros(x.shape[0], self.n_cfeat).to(x) | |
| # embed context and timestep | |
| cemb1 = self.contextembed1(c).view(-1, self.n_feat * 2, 1, 1) # (batch, 2*n_feat, 1,1) | |
| temb1 = self.timeembed1(t).view(-1, self.n_feat * 2, 1, 1) | |
| cemb2 = self.contextembed2(c).view(-1, self.n_feat, 1, 1) | |
| temb2 = self.timeembed2(t).view(-1, self.n_feat, 1, 1) | |
| #print(f"uunet forward: cemb1 {cemb1.shape}. temb1 {temb1.shape}, cemb2 {cemb2.shape}. temb2 {temb2.shape}") | |
| up1 = self.up0(hiddenvec) | |
| up2 = self.up1(cemb1*up1 + temb1, down2) # add and multiply embeddings | |
| up3 = self.up2(cemb2*up2 + temb2, down1) | |
| out = self.out(torch.cat((up3, x), 1)) | |
| return out | |
| # hyperparameters | |
| # diffusion hyperparameters | |
| timesteps = 500 | |
| beta1 = 1e-4 | |
| beta2 = 0.02 | |
| # network hyperparameters | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else torch.device('cpu')) | |
| n_feat = 64 # 64 hidden dimension feature | |
| n_cfeat = 5 # context vector is of size 5 | |
| height = 16 # 16x16 image | |
| save_dir = './weights/' | |
| # training hyperparameters | |
| batch_size = 100 | |
| n_epoch = 32 | |
| lrate=1e-3 | |
| # construct DDPM noise schedule | |
| b_t = (beta2 - beta1) * torch.linspace(0, 1, timesteps + 1, device=device) + beta1 | |
| a_t = 1 - b_t | |
| ab_t = torch.cumsum(a_t.log(), dim=0).exp() | |
| ab_t[0] = 1 | |
| # construct model | |
| nn_model = ContextUnet(in_channels=3, n_feat=n_feat, n_cfeat=n_cfeat, height=height).to(device) | |
| def greet(input): | |
| prompt = f""" | |
| Recommend complementary shop combinations which match well with the shop(s) described in the following text, which is delimited by triple backticks. Rank by synergy: \ | |
| Text: ```{input}``` | |
| """ | |
| response = prompt | |
| return response | |
| #iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
| #iface.launch() | |
| #iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entities")], title="NER with dslim/bert-base-NER", description="Find entities using the `dslim/bert-base-NER` model under the hood!", allow_flagging="never", examples=["My name is Andrew and I live in California", "My name is Poli and work at HuggingFace"]) | |
| iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Co-Retailing Business")], outputs="text") | |
| iface.launch() | |