Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import pandas as pd | |
import os | |
# Initialize detector | |
detector = pipeline("text-classification", model="debojit01/fake-review-detector") | |
# CSV file setup | |
FEEDBACK_FILE = "training_data.csv" | |
if not os.path.exists(FEEDBACK_FILE): | |
pd.DataFrame(columns=["text", "label"]).to_csv(FEEDBACK_FILE, index=False) | |
def predict(text): | |
result = detector(text)[0] | |
if result["label"] == "LABEL_0": # Real | |
return {"Real": result["score"], "Fake": 1 - result["score"]} | |
else: # Fake (LABEL_1) | |
return {"Real": 1 - result["score"], "Fake": result["score"]} | |
def save_feedback(text, prediction, is_correct): | |
"""Save feedback only when user submits""" | |
if is_correct is None: # No feedback provided | |
return "Prediction shown" | |
predicted_label = "Real" if prediction["Real"] > 0.5 else "Fake" | |
true_label = predicted_label if is_correct else ("Fake" if predicted_label == "Real" else "Real") | |
new_data = pd.DataFrame({"text": [text], "label": [true_label]}) | |
new_data.to_csv(FEEDBACK_FILE, mode='a', header=not os.path.exists(FEEDBACK_FILE), index=False) | |
return "Thank you for your feedback!" | |
with gr.Blocks() as app: | |
gr.Markdown("## Fake Review Detector") | |
with gr.Row(): | |
review_input = gr.Textbox(label="Enter Review") | |
predict_btn = gr.Button("Predict") | |
output_label = gr.Label(label="Prediction") | |
with gr.Row(visible=False) as feedback_row: | |
feedback_radio = gr.Radio( | |
["Correct", "Incorrect"], | |
label="Is this prediction accurate?" | |
) | |
feedback_btn = gr.Button("Submit Feedback") | |
status_text = gr.Textbox(label="Status", interactive=False) | |
def show_prediction(text): | |
prediction = predict(text) | |
return prediction, gr.Row(visible=True), "" | |
predict_btn.click( | |
show_prediction, | |
inputs=review_input, | |
outputs=[output_label, feedback_row, status_text] | |
) | |
feedback_btn.click( | |
save_feedback, | |
inputs=[review_input, output_label, feedback_radio], | |
outputs=status_text | |
) | |
app.launch() |