import gradio as gr from transformers import pipeline from datasets import load_dataset, Dataset from huggingface_hub import HfApi, notebook_login import os import pandas as pd # Initialize detector detector = pipeline("text-classification", model="debojit01/fake-review-detector") # Hugging Face Dataset setup HF_DATASET = "debojit01/fake-review-dataset" TOKEN = os.environ.get("HF_TOKEN") # Set this in Space secrets def predict(text): result = detector(text)[0] if result["label"] == "LABEL_0": # Real return {"Real": result["score"], "Fake": 1 - result["score"]} else: # Fake (LABEL_1) return {"Real": 1 - result["score"], "Fake": result["score"]} def save_feedback(text, prediction, is_correct): """Save feedback to HF dataset""" try: # Load existing dataset dataset = load_dataset(HF_DATASET)['train'] df = dataset.to_pandas() except: df = pd.DataFrame(columns=["text", "label"]) # Determine correct label predicted_label = "Real" if prediction["Real"] > 0.5 else "Fake" true_label = predicted_label if is_correct else ("Fake" if predicted_label == "Real" else "Real") # Append new data new_row = {"text": text, "label": true_label} df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True) # Convert back to dataset and push updated_dataset = Dataset.from_pandas(df) updated_dataset.push_to_hub( HF_DATASET, token=TOKEN, commit_message=f"New feedback added via app" ) return "Feedback saved to dataset!" with gr.Blocks() as app: gr.Markdown("## Fake Review Detector") with gr.Row(): review_input = gr.Textbox(label="Enter Review") predict_btn = gr.Button("Predict") output_label = gr.Label(label="Prediction") with gr.Row(visible=False) as feedback_row: feedback_radio = gr.Radio( ["Correct", "Incorrect"], label="Is this prediction accurate?" ) feedback_btn = gr.Button("Submit Feedback") status_text = gr.Textbox(label="Status", interactive=False) def show_prediction(text): prediction = predict(text) return prediction, gr.Row(visible=True), "" predict_btn.click( show_prediction, inputs=review_input, outputs=[output_label, feedback_row, status_text] ) feedback_btn.click( save_feedback, inputs=[review_input, output_label, feedback_radio], outputs=status_text ) app.launch()