Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Define the same VAE architecture used during training
|
7 |
+
class VAE(torch.nn.Module):
|
8 |
+
def __init__(self):
|
9 |
+
super().__init__()
|
10 |
+
self.encoder = torch.nn.Sequential(
|
11 |
+
torch.nn.Flatten(),
|
12 |
+
torch.nn.Linear(28*28, 400),
|
13 |
+
torch.nn.ReLU(),
|
14 |
+
)
|
15 |
+
self.mu = torch.nn.Linear(400, 20)
|
16 |
+
self.logvar = torch.nn.Linear(400, 20)
|
17 |
+
self.decoder = torch.nn.Sequential(
|
18 |
+
torch.nn.Linear(20, 400),
|
19 |
+
torch.nn.ReLU(),
|
20 |
+
torch.nn.Linear(400, 28*28),
|
21 |
+
torch.nn.Sigmoid()
|
22 |
+
)
|
23 |
+
|
24 |
+
def reparameterize(self, mu, logvar):
|
25 |
+
std = torch.exp(0.5 * logvar)
|
26 |
+
eps = torch.randn_like(std)
|
27 |
+
return mu + eps * std
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
h = self.encoder(x)
|
31 |
+
mu, logvar = self.mu(h), self.logvar(h)
|
32 |
+
z = self.reparameterize(mu, logvar)
|
33 |
+
return self.decoder(z)
|
34 |
+
|
35 |
+
# Load model
|
36 |
+
model = VAE()
|
37 |
+
model.load_state_dict(torch.load("vae_mnist.pth", map_location='cpu'))
|
38 |
+
model.eval()
|
39 |
+
|
40 |
+
# Generation function for Gradio
|
41 |
+
def generate_images(digit):
|
42 |
+
# For VAE, we ignore the digit and generate random samples
|
43 |
+
images = []
|
44 |
+
for _ in range(5):
|
45 |
+
z = torch.randn(1, 20)
|
46 |
+
img = model.decoder(z).detach().numpy().reshape(28, 28)
|
47 |
+
images.append((img * 255).astype(np.uint8))
|
48 |
+
return images
|
49 |
+
|
50 |
+
# Gradio interface
|
51 |
+
iface = gr.Interface(
|
52 |
+
fn=generate_images,
|
53 |
+
inputs=gr.Dropdown(choices=[str(i) for i in range(10)], label="Choose a digit (ignored for now)"),
|
54 |
+
outputs=[gr.Image(shape=(28,28), image_mode='L') for _ in range(5)],
|
55 |
+
title="Handwritten Digit Generator",
|
56 |
+
description="Select a digit (0–9) and generate 5 handwritten-style digits using a VAE trained on MNIST."
|
57 |
+
)
|
58 |
+
|
59 |
+
iface.launch()
|