import os # Set memory optimization environment variables os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True' os.environ['ANEMOI_INFERENCE_NUM_CHUNKS'] = '16' import gradio as gr import datetime import numpy as np import matplotlib.pyplot as plt import cartopy.crs as ccrs import cartopy.feature as cfeature import matplotlib.tri as tri from anemoi.inference.runners.simple import SimpleRunner from ecmwf.opendata import Client as OpendataClient import earthkit.data as ekd import earthkit.regrid as ekr # Define parameters (updating to match notebook.py) PARAM_SFC = ["10u", "10v", "2d", "2t", "msl", "skt", "sp", "tcw", "lsm", "z", "slor", "sdor"] PARAM_SOIL = ["vsw", "sot"] PARAM_PL = ["gh", "t", "u", "v", "w", "q"] LEVELS = [1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, 50] SOIL_LEVELS = [1, 2] DEFAULT_DATE = OpendataClient().latest() def get_open_data(param, levelist=[]): fields = {} # Get the data for the current date and the previous date for date in [DEFAULT_DATE - datetime.timedelta(hours=6), DEFAULT_DATE]: data = ekd.from_source("ecmwf-open-data", date=date, param=param, levelist=levelist) for f in data: assert f.to_numpy().shape == (721, 1440) values = np.roll(f.to_numpy(), -f.shape[1] // 2, axis=1) values = ekr.interpolate(values, {"grid": (0.25, 0.25)}, {"grid": "N320"}) name = f"{f.metadata('param')}_{f.metadata('levelist')}" if levelist else f.metadata("param") if name not in fields: fields[name] = [] fields[name].append(values) # Create a single matrix for each parameter for param, values in fields.items(): fields[param] = np.stack(values) return fields def run_forecast(date, lead_time, device): # Get all required fields fields = {} # Get surface fields fields.update(get_open_data(param=PARAM_SFC)) # Get soil fields and rename them soil = get_open_data(param=PARAM_SOIL, levelist=SOIL_LEVELS) mapping = { 'sot_1': 'stl1', 'sot_2': 'stl2', 'vsw_1': 'swvl1', 'vsw_2': 'swvl2' } for k, v in soil.items(): fields[mapping[k]] = v # Get pressure level fields fields.update(get_open_data(param=PARAM_PL, levelist=LEVELS)) # Convert geopotential height to geopotential for level in LEVELS: gh = fields.pop(f"gh_{level}") fields[f"z_{level}"] = gh * 9.80665 input_state = dict(date=date, fields=fields) runner = SimpleRunner("aifs-single-mse-1.0.ckpt", device=device) results = [] for state in runner.run(input_state=input_state, lead_time=lead_time): results.append(state) return results[-1] def plot_forecast(state): latitudes, longitudes = state["latitudes"], state["longitudes"] values = state["fields"]["100u"] fig, ax = plt.subplots(figsize=(11, 6), subplot_kw={"projection": ccrs.PlateCarree()}) ax.coastlines() ax.add_feature(cfeature.BORDERS, linestyle=":") triangulation = tri.Triangulation(longitudes, latitudes) contour = ax.tricontourf(triangulation, values, levels=20, transform=ccrs.PlateCarree(), cmap="RdBu") plt.title(f"100m winds at {state['date']}") plt.colorbar(contour) return fig def gradio_interface(date_str, lead_time, device): try: date = datetime.datetime.strptime(date_str, "%Y-%m-%d") except ValueError: raise gr.Error("Please enter a valid date in YYYY-MM-DD format") state = run_forecast(date, lead_time, device) return plot_forecast(state) demo = gr.Interface( fn=gradio_interface, inputs=[ gr.Textbox(value=DEFAULT_DATE.strftime("%Y-%m-%d"), label="Forecast Date (YYYY-MM-DD)"), gr.Slider(minimum=6, maximum=48, step=6, value=12, label="Lead Time (Hours)"), gr.Radio(choices=["cuda", "cpu"], value="cuda", label="Compute Device") ], outputs=gr.Plot(), title="AIFS Weather Forecast", description="Run ECMWF AIFS forecasts based on selected parameters." ) demo.launch()