Spaces:
Configuration error
Configuration error
add required files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +1 -1
- audioldm/__init__.py +8 -0
- audioldm/__main__.py +183 -0
- audioldm/__pycache__/__init__.cpython-39.pyc +0 -0
- audioldm/__pycache__/ldm.cpython-39.pyc +0 -0
- audioldm/__pycache__/pipeline.cpython-39.pyc +0 -0
- audioldm/__pycache__/utils.cpython-39.pyc +0 -0
- audioldm/audio/__init__.py +2 -0
- audioldm/audio/__pycache__/__init__.cpython-39.pyc +0 -0
- audioldm/audio/__pycache__/audio_processing.cpython-39.pyc +0 -0
- audioldm/audio/__pycache__/mix.cpython-39.pyc +0 -0
- audioldm/audio/__pycache__/stft.cpython-39.pyc +0 -0
- audioldm/audio/__pycache__/tools.cpython-39.pyc +0 -0
- audioldm/audio/__pycache__/torch_tools.cpython-39.pyc +0 -0
- audioldm/audio/audio_processing.py +100 -0
- audioldm/audio/stft.py +186 -0
- audioldm/audio/tools.py +85 -0
- audioldm/hifigan/__init__.py +7 -0
- audioldm/hifigan/__pycache__/__init__.cpython-39.pyc +0 -0
- audioldm/hifigan/__pycache__/models.cpython-39.pyc +0 -0
- audioldm/hifigan/__pycache__/utilities.cpython-39.pyc +0 -0
- audioldm/hifigan/models.py +174 -0
- audioldm/hifigan/utilities.py +86 -0
- audioldm/latent_diffusion/__init__.py +0 -0
- audioldm/latent_diffusion/__pycache__/__init__.cpython-39.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/attention.cpython-39.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/ddim.cpython-39.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/ddpm.cpython-39.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/ema.cpython-39.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/openaimodel.cpython-39.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/util.cpython-39.pyc +0 -0
- audioldm/latent_diffusion/attention.py +469 -0
- audioldm/latent_diffusion/ddim.py +377 -0
- audioldm/latent_diffusion/ddpm.py +441 -0
- audioldm/latent_diffusion/ema.py +82 -0
- audioldm/latent_diffusion/openaimodel.py +1069 -0
- audioldm/latent_diffusion/util.py +295 -0
- audioldm/ldm.py +818 -0
- audioldm/pipeline.py +301 -0
- audioldm/utils.py +281 -0
- audioldm/variational_autoencoder/__init__.py +1 -0
- audioldm/variational_autoencoder/__pycache__/__init__.cpython-39.pyc +0 -0
- audioldm/variational_autoencoder/__pycache__/autoencoder.cpython-39.pyc +0 -0
- audioldm/variational_autoencoder/__pycache__/distributions.cpython-39.pyc +0 -0
- audioldm/variational_autoencoder/__pycache__/modules.cpython-39.pyc +0 -0
- audioldm/variational_autoencoder/autoencoder.py +135 -0
- audioldm/variational_autoencoder/distributions.py +102 -0
- audioldm/variational_autoencoder/modules.py +1066 -0
- diffusers/CITATION.cff +40 -0
- diffusers/CODE_OF_CONDUCT.md +130 -0
app.py
CHANGED
|
@@ -94,7 +94,7 @@ gr_interface = gr.Interface(
|
|
| 94 |
inputs=input_text,
|
| 95 |
outputs=[output_audio],
|
| 96 |
title="Tango Audio Generator",
|
| 97 |
-
description="Generate audio using Tango
|
| 98 |
allow_flagging=False,
|
| 99 |
examples=[
|
| 100 |
["A Dog Barking"],
|
|
|
|
| 94 |
inputs=input_text,
|
| 95 |
outputs=[output_audio],
|
| 96 |
title="Tango Audio Generator",
|
| 97 |
+
description="Generate audio using Tango by providing a text prompt.",
|
| 98 |
allow_flagging=False,
|
| 99 |
examples=[
|
| 100 |
["A Dog Barking"],
|
audioldm/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .ldm import LatentDiffusion
|
| 2 |
+
from .utils import seed_everything, save_wave, get_time, get_duration
|
| 3 |
+
from .pipeline import *
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
audioldm/__main__.py
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
import os
|
| 3 |
+
from audioldm import text_to_audio, style_transfer, build_model, save_wave, get_time, round_up_duration, get_duration
|
| 4 |
+
import argparse
|
| 5 |
+
|
| 6 |
+
CACHE_DIR = os.getenv(
|
| 7 |
+
"AUDIOLDM_CACHE_DIR",
|
| 8 |
+
os.path.join(os.path.expanduser("~"), ".cache/audioldm"))
|
| 9 |
+
|
| 10 |
+
parser = argparse.ArgumentParser()
|
| 11 |
+
|
| 12 |
+
parser.add_argument(
|
| 13 |
+
"--mode",
|
| 14 |
+
type=str,
|
| 15 |
+
required=False,
|
| 16 |
+
default="generation",
|
| 17 |
+
help="generation: text-to-audio generation; transfer: style transfer",
|
| 18 |
+
choices=["generation", "transfer"]
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
parser.add_argument(
|
| 22 |
+
"-t",
|
| 23 |
+
"--text",
|
| 24 |
+
type=str,
|
| 25 |
+
required=False,
|
| 26 |
+
default="",
|
| 27 |
+
help="Text prompt to the model for audio generation",
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
parser.add_argument(
|
| 31 |
+
"-f",
|
| 32 |
+
"--file_path",
|
| 33 |
+
type=str,
|
| 34 |
+
required=False,
|
| 35 |
+
default=None,
|
| 36 |
+
help="(--mode transfer): Original audio file for style transfer; Or (--mode generation): the guidance audio file for generating simialr audio",
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
parser.add_argument(
|
| 40 |
+
"--transfer_strength",
|
| 41 |
+
type=float,
|
| 42 |
+
required=False,
|
| 43 |
+
default=0.5,
|
| 44 |
+
help="A value between 0 and 1. 0 means original audio without transfer, 1 means completely transfer to the audio indicated by text",
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
parser.add_argument(
|
| 48 |
+
"-s",
|
| 49 |
+
"--save_path",
|
| 50 |
+
type=str,
|
| 51 |
+
required=False,
|
| 52 |
+
help="The path to save model output",
|
| 53 |
+
default="./output",
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
parser.add_argument(
|
| 57 |
+
"--model_name",
|
| 58 |
+
type=str,
|
| 59 |
+
required=False,
|
| 60 |
+
help="The checkpoint you gonna use",
|
| 61 |
+
default="audioldm-s-full",
|
| 62 |
+
choices=["audioldm-s-full", "audioldm-l-full", "audioldm-s-full-v2"]
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
parser.add_argument(
|
| 66 |
+
"-ckpt",
|
| 67 |
+
"--ckpt_path",
|
| 68 |
+
type=str,
|
| 69 |
+
required=False,
|
| 70 |
+
help="The path to the pretrained .ckpt model",
|
| 71 |
+
default=None,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
parser.add_argument(
|
| 75 |
+
"-b",
|
| 76 |
+
"--batchsize",
|
| 77 |
+
type=int,
|
| 78 |
+
required=False,
|
| 79 |
+
default=1,
|
| 80 |
+
help="Generate how many samples at the same time",
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
parser.add_argument(
|
| 84 |
+
"--ddim_steps",
|
| 85 |
+
type=int,
|
| 86 |
+
required=False,
|
| 87 |
+
default=200,
|
| 88 |
+
help="The sampling step for DDIM",
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
parser.add_argument(
|
| 92 |
+
"-gs",
|
| 93 |
+
"--guidance_scale",
|
| 94 |
+
type=float,
|
| 95 |
+
required=False,
|
| 96 |
+
default=2.5,
|
| 97 |
+
help="Guidance scale (Large => better quality and relavancy to text; Small => better diversity)",
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
parser.add_argument(
|
| 101 |
+
"-dur",
|
| 102 |
+
"--duration",
|
| 103 |
+
type=float,
|
| 104 |
+
required=False,
|
| 105 |
+
default=10.0,
|
| 106 |
+
help="The duration of the samples",
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
parser.add_argument(
|
| 110 |
+
"-n",
|
| 111 |
+
"--n_candidate_gen_per_text",
|
| 112 |
+
type=int,
|
| 113 |
+
required=False,
|
| 114 |
+
default=3,
|
| 115 |
+
help="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation",
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
parser.add_argument(
|
| 119 |
+
"--seed",
|
| 120 |
+
type=int,
|
| 121 |
+
required=False,
|
| 122 |
+
default=42,
|
| 123 |
+
help="Change this value (any integer number) will lead to a different generation result.",
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
args = parser.parse_args()
|
| 127 |
+
|
| 128 |
+
if(args.ckpt_path is not None):
|
| 129 |
+
print("Warning: ckpt_path has no effect after version 0.0.20.")
|
| 130 |
+
|
| 131 |
+
assert args.duration % 2.5 == 0, "Duration must be a multiple of 2.5"
|
| 132 |
+
|
| 133 |
+
mode = args.mode
|
| 134 |
+
if(mode == "generation" and args.file_path is not None):
|
| 135 |
+
mode = "generation_audio_to_audio"
|
| 136 |
+
if(len(args.text) > 0):
|
| 137 |
+
print("Warning: You have specified the --file_path. --text will be ignored")
|
| 138 |
+
args.text = ""
|
| 139 |
+
|
| 140 |
+
save_path = os.path.join(args.save_path, mode)
|
| 141 |
+
|
| 142 |
+
if(args.file_path is not None):
|
| 143 |
+
save_path = os.path.join(save_path, os.path.basename(args.file_path.split(".")[0]))
|
| 144 |
+
|
| 145 |
+
text = args.text
|
| 146 |
+
random_seed = args.seed
|
| 147 |
+
duration = args.duration
|
| 148 |
+
guidance_scale = args.guidance_scale
|
| 149 |
+
n_candidate_gen_per_text = args.n_candidate_gen_per_text
|
| 150 |
+
|
| 151 |
+
os.makedirs(save_path, exist_ok=True)
|
| 152 |
+
audioldm = build_model(model_name=args.model_name)
|
| 153 |
+
|
| 154 |
+
if(args.mode == "generation"):
|
| 155 |
+
waveform = text_to_audio(
|
| 156 |
+
audioldm,
|
| 157 |
+
text,
|
| 158 |
+
args.file_path,
|
| 159 |
+
random_seed,
|
| 160 |
+
duration=duration,
|
| 161 |
+
guidance_scale=guidance_scale,
|
| 162 |
+
ddim_steps=args.ddim_steps,
|
| 163 |
+
n_candidate_gen_per_text=n_candidate_gen_per_text,
|
| 164 |
+
batchsize=args.batchsize,
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
elif(args.mode == "transfer"):
|
| 168 |
+
assert args.file_path is not None
|
| 169 |
+
assert os.path.exists(args.file_path), "The original audio file \'%s\' for style transfer does not exist." % args.file_path
|
| 170 |
+
waveform = style_transfer(
|
| 171 |
+
audioldm,
|
| 172 |
+
text,
|
| 173 |
+
args.file_path,
|
| 174 |
+
args.transfer_strength,
|
| 175 |
+
random_seed,
|
| 176 |
+
duration=duration,
|
| 177 |
+
guidance_scale=guidance_scale,
|
| 178 |
+
ddim_steps=args.ddim_steps,
|
| 179 |
+
batchsize=args.batchsize,
|
| 180 |
+
)
|
| 181 |
+
waveform = waveform[:,None,:]
|
| 182 |
+
|
| 183 |
+
save_wave(waveform, save_path, name="%s_%s" % (get_time(), text))
|
audioldm/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (322 Bytes). View file
|
|
|
audioldm/__pycache__/ldm.cpython-39.pyc
ADDED
|
Binary file (16 kB). View file
|
|
|
audioldm/__pycache__/pipeline.cpython-39.pyc
ADDED
|
Binary file (6.54 kB). View file
|
|
|
audioldm/__pycache__/utils.cpython-39.pyc
ADDED
|
Binary file (7.35 kB). View file
|
|
|
audioldm/audio/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .tools import wav_to_fbank, read_wav_file
|
| 2 |
+
from .stft import TacotronSTFT
|
audioldm/audio/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (260 Bytes). View file
|
|
|
audioldm/audio/__pycache__/audio_processing.cpython-39.pyc
ADDED
|
Binary file (2.78 kB). View file
|
|
|
audioldm/audio/__pycache__/mix.cpython-39.pyc
ADDED
|
Binary file (1.7 kB). View file
|
|
|
audioldm/audio/__pycache__/stft.cpython-39.pyc
ADDED
|
Binary file (4.99 kB). View file
|
|
|
audioldm/audio/__pycache__/tools.cpython-39.pyc
ADDED
|
Binary file (2.19 kB). View file
|
|
|
audioldm/audio/__pycache__/torch_tools.cpython-39.pyc
ADDED
|
Binary file (3.79 kB). View file
|
|
|
audioldm/audio/audio_processing.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import librosa.util as librosa_util
|
| 4 |
+
from scipy.signal import get_window
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def window_sumsquare(
|
| 8 |
+
window,
|
| 9 |
+
n_frames,
|
| 10 |
+
hop_length,
|
| 11 |
+
win_length,
|
| 12 |
+
n_fft,
|
| 13 |
+
dtype=np.float32,
|
| 14 |
+
norm=None,
|
| 15 |
+
):
|
| 16 |
+
"""
|
| 17 |
+
# from librosa 0.6
|
| 18 |
+
Compute the sum-square envelope of a window function at a given hop length.
|
| 19 |
+
|
| 20 |
+
This is used to estimate modulation effects induced by windowing
|
| 21 |
+
observations in short-time fourier transforms.
|
| 22 |
+
|
| 23 |
+
Parameters
|
| 24 |
+
----------
|
| 25 |
+
window : string, tuple, number, callable, or list-like
|
| 26 |
+
Window specification, as in `get_window`
|
| 27 |
+
|
| 28 |
+
n_frames : int > 0
|
| 29 |
+
The number of analysis frames
|
| 30 |
+
|
| 31 |
+
hop_length : int > 0
|
| 32 |
+
The number of samples to advance between frames
|
| 33 |
+
|
| 34 |
+
win_length : [optional]
|
| 35 |
+
The length of the window function. By default, this matches `n_fft`.
|
| 36 |
+
|
| 37 |
+
n_fft : int > 0
|
| 38 |
+
The length of each analysis frame.
|
| 39 |
+
|
| 40 |
+
dtype : np.dtype
|
| 41 |
+
The data type of the output
|
| 42 |
+
|
| 43 |
+
Returns
|
| 44 |
+
-------
|
| 45 |
+
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
|
| 46 |
+
The sum-squared envelope of the window function
|
| 47 |
+
"""
|
| 48 |
+
if win_length is None:
|
| 49 |
+
win_length = n_fft
|
| 50 |
+
|
| 51 |
+
n = n_fft + hop_length * (n_frames - 1)
|
| 52 |
+
x = np.zeros(n, dtype=dtype)
|
| 53 |
+
|
| 54 |
+
# Compute the squared window at the desired length
|
| 55 |
+
win_sq = get_window(window, win_length, fftbins=True)
|
| 56 |
+
win_sq = librosa_util.normalize(win_sq, norm=norm) ** 2
|
| 57 |
+
win_sq = librosa_util.pad_center(win_sq, n_fft)
|
| 58 |
+
|
| 59 |
+
# Fill the envelope
|
| 60 |
+
for i in range(n_frames):
|
| 61 |
+
sample = i * hop_length
|
| 62 |
+
x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))]
|
| 63 |
+
return x
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def griffin_lim(magnitudes, stft_fn, n_iters=30):
|
| 67 |
+
"""
|
| 68 |
+
PARAMS
|
| 69 |
+
------
|
| 70 |
+
magnitudes: spectrogram magnitudes
|
| 71 |
+
stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size())))
|
| 75 |
+
angles = angles.astype(np.float32)
|
| 76 |
+
angles = torch.autograd.Variable(torch.from_numpy(angles))
|
| 77 |
+
signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
|
| 78 |
+
|
| 79 |
+
for i in range(n_iters):
|
| 80 |
+
_, angles = stft_fn.transform(signal)
|
| 81 |
+
signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
|
| 82 |
+
return signal
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def dynamic_range_compression(x, normalize_fun=torch.log, C=1, clip_val=1e-5):
|
| 86 |
+
"""
|
| 87 |
+
PARAMS
|
| 88 |
+
------
|
| 89 |
+
C: compression factor
|
| 90 |
+
"""
|
| 91 |
+
return normalize_fun(torch.clamp(x, min=clip_val) * C)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def dynamic_range_decompression(x, C=1):
|
| 95 |
+
"""
|
| 96 |
+
PARAMS
|
| 97 |
+
------
|
| 98 |
+
C: compression factor used to compress
|
| 99 |
+
"""
|
| 100 |
+
return torch.exp(x) / C
|
audioldm/audio/stft.py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import numpy as np
|
| 4 |
+
from scipy.signal import get_window
|
| 5 |
+
from librosa.util import pad_center, tiny
|
| 6 |
+
from librosa.filters import mel as librosa_mel_fn
|
| 7 |
+
|
| 8 |
+
from audioldm.audio.audio_processing import (
|
| 9 |
+
dynamic_range_compression,
|
| 10 |
+
dynamic_range_decompression,
|
| 11 |
+
window_sumsquare,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class STFT(torch.nn.Module):
|
| 16 |
+
"""adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
|
| 17 |
+
|
| 18 |
+
def __init__(self, filter_length, hop_length, win_length, window="hann"):
|
| 19 |
+
super(STFT, self).__init__()
|
| 20 |
+
self.filter_length = filter_length
|
| 21 |
+
self.hop_length = hop_length
|
| 22 |
+
self.win_length = win_length
|
| 23 |
+
self.window = window
|
| 24 |
+
self.forward_transform = None
|
| 25 |
+
scale = self.filter_length / self.hop_length
|
| 26 |
+
fourier_basis = np.fft.fft(np.eye(self.filter_length))
|
| 27 |
+
|
| 28 |
+
cutoff = int((self.filter_length / 2 + 1))
|
| 29 |
+
fourier_basis = np.vstack(
|
| 30 |
+
[np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
|
| 34 |
+
inverse_basis = torch.FloatTensor(
|
| 35 |
+
np.linalg.pinv(scale * fourier_basis).T[:, None, :]
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
if window is not None:
|
| 39 |
+
assert filter_length >= win_length
|
| 40 |
+
# get window and zero center pad it to filter_length
|
| 41 |
+
fft_window = get_window(window, win_length, fftbins=True)
|
| 42 |
+
fft_window = pad_center(fft_window, filter_length)
|
| 43 |
+
fft_window = torch.from_numpy(fft_window).float()
|
| 44 |
+
|
| 45 |
+
# window the bases
|
| 46 |
+
forward_basis *= fft_window
|
| 47 |
+
inverse_basis *= fft_window
|
| 48 |
+
|
| 49 |
+
self.register_buffer("forward_basis", forward_basis.float())
|
| 50 |
+
self.register_buffer("inverse_basis", inverse_basis.float())
|
| 51 |
+
|
| 52 |
+
def transform(self, input_data):
|
| 53 |
+
device = self.forward_basis.device
|
| 54 |
+
input_data = input_data.to(device)
|
| 55 |
+
|
| 56 |
+
num_batches = input_data.size(0)
|
| 57 |
+
num_samples = input_data.size(1)
|
| 58 |
+
|
| 59 |
+
self.num_samples = num_samples
|
| 60 |
+
|
| 61 |
+
# similar to librosa, reflect-pad the input
|
| 62 |
+
input_data = input_data.view(num_batches, 1, num_samples)
|
| 63 |
+
input_data = F.pad(
|
| 64 |
+
input_data.unsqueeze(1),
|
| 65 |
+
(int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
|
| 66 |
+
mode="reflect",
|
| 67 |
+
)
|
| 68 |
+
input_data = input_data.squeeze(1)
|
| 69 |
+
|
| 70 |
+
forward_transform = F.conv1d(
|
| 71 |
+
input_data,
|
| 72 |
+
torch.autograd.Variable(self.forward_basis, requires_grad=False),
|
| 73 |
+
stride=self.hop_length,
|
| 74 |
+
padding=0,
|
| 75 |
+
)#.cpu()
|
| 76 |
+
|
| 77 |
+
cutoff = int((self.filter_length / 2) + 1)
|
| 78 |
+
real_part = forward_transform[:, :cutoff, :]
|
| 79 |
+
imag_part = forward_transform[:, cutoff:, :]
|
| 80 |
+
|
| 81 |
+
magnitude = torch.sqrt(real_part**2 + imag_part**2)
|
| 82 |
+
phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data))
|
| 83 |
+
|
| 84 |
+
return magnitude, phase
|
| 85 |
+
|
| 86 |
+
def inverse(self, magnitude, phase):
|
| 87 |
+
device = self.forward_basis.device
|
| 88 |
+
magnitude, phase = magnitude.to(device), phase.to(device)
|
| 89 |
+
|
| 90 |
+
recombine_magnitude_phase = torch.cat(
|
| 91 |
+
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
inverse_transform = F.conv_transpose1d(
|
| 95 |
+
recombine_magnitude_phase,
|
| 96 |
+
torch.autograd.Variable(self.inverse_basis, requires_grad=False),
|
| 97 |
+
stride=self.hop_length,
|
| 98 |
+
padding=0,
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
if self.window is not None:
|
| 102 |
+
window_sum = window_sumsquare(
|
| 103 |
+
self.window,
|
| 104 |
+
magnitude.size(-1),
|
| 105 |
+
hop_length=self.hop_length,
|
| 106 |
+
win_length=self.win_length,
|
| 107 |
+
n_fft=self.filter_length,
|
| 108 |
+
dtype=np.float32,
|
| 109 |
+
)
|
| 110 |
+
# remove modulation effects
|
| 111 |
+
approx_nonzero_indices = torch.from_numpy(
|
| 112 |
+
np.where(window_sum > tiny(window_sum))[0]
|
| 113 |
+
)
|
| 114 |
+
window_sum = torch.autograd.Variable(
|
| 115 |
+
torch.from_numpy(window_sum), requires_grad=False
|
| 116 |
+
)
|
| 117 |
+
window_sum = window_sum
|
| 118 |
+
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
|
| 119 |
+
approx_nonzero_indices
|
| 120 |
+
]
|
| 121 |
+
|
| 122 |
+
# scale by hop ratio
|
| 123 |
+
inverse_transform *= float(self.filter_length) / self.hop_length
|
| 124 |
+
|
| 125 |
+
inverse_transform = inverse_transform[:, :, int(self.filter_length / 2) :]
|
| 126 |
+
inverse_transform = inverse_transform[:, :, : -int(self.filter_length / 2) :]
|
| 127 |
+
|
| 128 |
+
return inverse_transform
|
| 129 |
+
|
| 130 |
+
def forward(self, input_data):
|
| 131 |
+
self.magnitude, self.phase = self.transform(input_data)
|
| 132 |
+
reconstruction = self.inverse(self.magnitude, self.phase)
|
| 133 |
+
return reconstruction
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class TacotronSTFT(torch.nn.Module):
|
| 137 |
+
def __init__(
|
| 138 |
+
self,
|
| 139 |
+
filter_length,
|
| 140 |
+
hop_length,
|
| 141 |
+
win_length,
|
| 142 |
+
n_mel_channels,
|
| 143 |
+
sampling_rate,
|
| 144 |
+
mel_fmin,
|
| 145 |
+
mel_fmax,
|
| 146 |
+
):
|
| 147 |
+
super(TacotronSTFT, self).__init__()
|
| 148 |
+
self.n_mel_channels = n_mel_channels
|
| 149 |
+
self.sampling_rate = sampling_rate
|
| 150 |
+
self.stft_fn = STFT(filter_length, hop_length, win_length)
|
| 151 |
+
mel_basis = librosa_mel_fn(
|
| 152 |
+
sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax
|
| 153 |
+
)
|
| 154 |
+
mel_basis = torch.from_numpy(mel_basis).float()
|
| 155 |
+
self.register_buffer("mel_basis", mel_basis)
|
| 156 |
+
|
| 157 |
+
def spectral_normalize(self, magnitudes, normalize_fun):
|
| 158 |
+
output = dynamic_range_compression(magnitudes, normalize_fun)
|
| 159 |
+
return output
|
| 160 |
+
|
| 161 |
+
def spectral_de_normalize(self, magnitudes):
|
| 162 |
+
output = dynamic_range_decompression(magnitudes)
|
| 163 |
+
return output
|
| 164 |
+
|
| 165 |
+
def mel_spectrogram(self, y, normalize_fun=torch.log):
|
| 166 |
+
"""Computes mel-spectrograms from a batch of waves
|
| 167 |
+
PARAMS
|
| 168 |
+
------
|
| 169 |
+
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
|
| 170 |
+
|
| 171 |
+
RETURNS
|
| 172 |
+
-------
|
| 173 |
+
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
|
| 174 |
+
"""
|
| 175 |
+
assert torch.min(y.data) >= -1, torch.min(y.data)
|
| 176 |
+
assert torch.max(y.data) <= 1, torch.max(y.data)
|
| 177 |
+
|
| 178 |
+
magnitudes, phases = self.stft_fn.transform(y)
|
| 179 |
+
magnitudes = magnitudes.data
|
| 180 |
+
mel_output = torch.matmul(self.mel_basis, magnitudes)
|
| 181 |
+
mel_output = self.spectral_normalize(mel_output, normalize_fun)
|
| 182 |
+
energy = torch.norm(magnitudes, dim=1)
|
| 183 |
+
|
| 184 |
+
log_magnitudes = self.spectral_normalize(magnitudes, normalize_fun)
|
| 185 |
+
|
| 186 |
+
return mel_output, log_magnitudes, energy
|
audioldm/audio/tools.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torchaudio
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def get_mel_from_wav(audio, _stft):
|
| 7 |
+
audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1)
|
| 8 |
+
audio = torch.autograd.Variable(audio, requires_grad=False)
|
| 9 |
+
melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio)
|
| 10 |
+
melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32)
|
| 11 |
+
log_magnitudes_stft = (
|
| 12 |
+
torch.squeeze(log_magnitudes_stft, 0).numpy().astype(np.float32)
|
| 13 |
+
)
|
| 14 |
+
energy = torch.squeeze(energy, 0).numpy().astype(np.float32)
|
| 15 |
+
return melspec, log_magnitudes_stft, energy
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def _pad_spec(fbank, target_length=1024):
|
| 19 |
+
n_frames = fbank.shape[0]
|
| 20 |
+
p = target_length - n_frames
|
| 21 |
+
# cut and pad
|
| 22 |
+
if p > 0:
|
| 23 |
+
m = torch.nn.ZeroPad2d((0, 0, 0, p))
|
| 24 |
+
fbank = m(fbank)
|
| 25 |
+
elif p < 0:
|
| 26 |
+
fbank = fbank[0:target_length, :]
|
| 27 |
+
|
| 28 |
+
if fbank.size(-1) % 2 != 0:
|
| 29 |
+
fbank = fbank[..., :-1]
|
| 30 |
+
|
| 31 |
+
return fbank
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def pad_wav(waveform, segment_length):
|
| 35 |
+
waveform_length = waveform.shape[-1]
|
| 36 |
+
assert waveform_length > 100, "Waveform is too short, %s" % waveform_length
|
| 37 |
+
if segment_length is None or waveform_length == segment_length:
|
| 38 |
+
return waveform
|
| 39 |
+
elif waveform_length > segment_length:
|
| 40 |
+
return waveform[:segment_length]
|
| 41 |
+
elif waveform_length < segment_length:
|
| 42 |
+
temp_wav = np.zeros((1, segment_length))
|
| 43 |
+
temp_wav[:, :waveform_length] = waveform
|
| 44 |
+
return temp_wav
|
| 45 |
+
|
| 46 |
+
def normalize_wav(waveform):
|
| 47 |
+
waveform = waveform - np.mean(waveform)
|
| 48 |
+
waveform = waveform / (np.max(np.abs(waveform)) + 1e-8)
|
| 49 |
+
return waveform * 0.5
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def read_wav_file(filename, segment_length):
|
| 53 |
+
# waveform, sr = librosa.load(filename, sr=None, mono=True) # 4 times slower
|
| 54 |
+
waveform, sr = torchaudio.load(filename) # Faster!!!
|
| 55 |
+
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
|
| 56 |
+
waveform = waveform.numpy()[0, ...]
|
| 57 |
+
waveform = normalize_wav(waveform)
|
| 58 |
+
waveform = waveform[None, ...]
|
| 59 |
+
waveform = pad_wav(waveform, segment_length)
|
| 60 |
+
|
| 61 |
+
waveform = waveform / np.max(np.abs(waveform))
|
| 62 |
+
waveform = 0.5 * waveform
|
| 63 |
+
|
| 64 |
+
return waveform
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def wav_to_fbank(filename, target_length=1024, fn_STFT=None):
|
| 68 |
+
assert fn_STFT is not None
|
| 69 |
+
|
| 70 |
+
# mixup
|
| 71 |
+
waveform = read_wav_file(filename, target_length * 160) # hop size is 160
|
| 72 |
+
|
| 73 |
+
waveform = waveform[0, ...]
|
| 74 |
+
waveform = torch.FloatTensor(waveform)
|
| 75 |
+
|
| 76 |
+
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
|
| 77 |
+
|
| 78 |
+
fbank = torch.FloatTensor(fbank.T)
|
| 79 |
+
log_magnitudes_stft = torch.FloatTensor(log_magnitudes_stft.T)
|
| 80 |
+
|
| 81 |
+
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
|
| 82 |
+
log_magnitudes_stft, target_length
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
return fbank, log_magnitudes_stft, waveform
|
audioldm/hifigan/__init__.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .models import Generator
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class AttrDict(dict):
|
| 5 |
+
def __init__(self, *args, **kwargs):
|
| 6 |
+
super(AttrDict, self).__init__(*args, **kwargs)
|
| 7 |
+
self.__dict__ = self
|
audioldm/hifigan/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (574 Bytes). View file
|
|
|
audioldm/hifigan/__pycache__/models.cpython-39.pyc
ADDED
|
Binary file (3.73 kB). View file
|
|
|
audioldm/hifigan/__pycache__/utilities.cpython-39.pyc
ADDED
|
Binary file (2.37 kB). View file
|
|
|
audioldm/hifigan/models.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from torch.nn import Conv1d, ConvTranspose1d
|
| 5 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
| 6 |
+
|
| 7 |
+
LRELU_SLOPE = 0.1
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def init_weights(m, mean=0.0, std=0.01):
|
| 11 |
+
classname = m.__class__.__name__
|
| 12 |
+
if classname.find("Conv") != -1:
|
| 13 |
+
m.weight.data.normal_(mean, std)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def get_padding(kernel_size, dilation=1):
|
| 17 |
+
return int((kernel_size * dilation - dilation) / 2)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class ResBlock(torch.nn.Module):
|
| 21 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
|
| 22 |
+
super(ResBlock, self).__init__()
|
| 23 |
+
self.h = h
|
| 24 |
+
self.convs1 = nn.ModuleList(
|
| 25 |
+
[
|
| 26 |
+
weight_norm(
|
| 27 |
+
Conv1d(
|
| 28 |
+
channels,
|
| 29 |
+
channels,
|
| 30 |
+
kernel_size,
|
| 31 |
+
1,
|
| 32 |
+
dilation=dilation[0],
|
| 33 |
+
padding=get_padding(kernel_size, dilation[0]),
|
| 34 |
+
)
|
| 35 |
+
),
|
| 36 |
+
weight_norm(
|
| 37 |
+
Conv1d(
|
| 38 |
+
channels,
|
| 39 |
+
channels,
|
| 40 |
+
kernel_size,
|
| 41 |
+
1,
|
| 42 |
+
dilation=dilation[1],
|
| 43 |
+
padding=get_padding(kernel_size, dilation[1]),
|
| 44 |
+
)
|
| 45 |
+
),
|
| 46 |
+
weight_norm(
|
| 47 |
+
Conv1d(
|
| 48 |
+
channels,
|
| 49 |
+
channels,
|
| 50 |
+
kernel_size,
|
| 51 |
+
1,
|
| 52 |
+
dilation=dilation[2],
|
| 53 |
+
padding=get_padding(kernel_size, dilation[2]),
|
| 54 |
+
)
|
| 55 |
+
),
|
| 56 |
+
]
|
| 57 |
+
)
|
| 58 |
+
self.convs1.apply(init_weights)
|
| 59 |
+
|
| 60 |
+
self.convs2 = nn.ModuleList(
|
| 61 |
+
[
|
| 62 |
+
weight_norm(
|
| 63 |
+
Conv1d(
|
| 64 |
+
channels,
|
| 65 |
+
channels,
|
| 66 |
+
kernel_size,
|
| 67 |
+
1,
|
| 68 |
+
dilation=1,
|
| 69 |
+
padding=get_padding(kernel_size, 1),
|
| 70 |
+
)
|
| 71 |
+
),
|
| 72 |
+
weight_norm(
|
| 73 |
+
Conv1d(
|
| 74 |
+
channels,
|
| 75 |
+
channels,
|
| 76 |
+
kernel_size,
|
| 77 |
+
1,
|
| 78 |
+
dilation=1,
|
| 79 |
+
padding=get_padding(kernel_size, 1),
|
| 80 |
+
)
|
| 81 |
+
),
|
| 82 |
+
weight_norm(
|
| 83 |
+
Conv1d(
|
| 84 |
+
channels,
|
| 85 |
+
channels,
|
| 86 |
+
kernel_size,
|
| 87 |
+
1,
|
| 88 |
+
dilation=1,
|
| 89 |
+
padding=get_padding(kernel_size, 1),
|
| 90 |
+
)
|
| 91 |
+
),
|
| 92 |
+
]
|
| 93 |
+
)
|
| 94 |
+
self.convs2.apply(init_weights)
|
| 95 |
+
|
| 96 |
+
def forward(self, x):
|
| 97 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
| 98 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
| 99 |
+
xt = c1(xt)
|
| 100 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
| 101 |
+
xt = c2(xt)
|
| 102 |
+
x = xt + x
|
| 103 |
+
return x
|
| 104 |
+
|
| 105 |
+
def remove_weight_norm(self):
|
| 106 |
+
for l in self.convs1:
|
| 107 |
+
remove_weight_norm(l)
|
| 108 |
+
for l in self.convs2:
|
| 109 |
+
remove_weight_norm(l)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
class Generator(torch.nn.Module):
|
| 113 |
+
def __init__(self, h):
|
| 114 |
+
super(Generator, self).__init__()
|
| 115 |
+
self.h = h
|
| 116 |
+
self.num_kernels = len(h.resblock_kernel_sizes)
|
| 117 |
+
self.num_upsamples = len(h.upsample_rates)
|
| 118 |
+
self.conv_pre = weight_norm(
|
| 119 |
+
Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)
|
| 120 |
+
)
|
| 121 |
+
resblock = ResBlock
|
| 122 |
+
|
| 123 |
+
self.ups = nn.ModuleList()
|
| 124 |
+
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
| 125 |
+
self.ups.append(
|
| 126 |
+
weight_norm(
|
| 127 |
+
ConvTranspose1d(
|
| 128 |
+
h.upsample_initial_channel // (2**i),
|
| 129 |
+
h.upsample_initial_channel // (2 ** (i + 1)),
|
| 130 |
+
k,
|
| 131 |
+
u,
|
| 132 |
+
padding=(k - u) // 2,
|
| 133 |
+
)
|
| 134 |
+
)
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
self.resblocks = nn.ModuleList()
|
| 138 |
+
for i in range(len(self.ups)):
|
| 139 |
+
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
| 140 |
+
for j, (k, d) in enumerate(
|
| 141 |
+
zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)
|
| 142 |
+
):
|
| 143 |
+
self.resblocks.append(resblock(h, ch, k, d))
|
| 144 |
+
|
| 145 |
+
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
| 146 |
+
self.ups.apply(init_weights)
|
| 147 |
+
self.conv_post.apply(init_weights)
|
| 148 |
+
|
| 149 |
+
def forward(self, x):
|
| 150 |
+
x = self.conv_pre(x)
|
| 151 |
+
for i in range(self.num_upsamples):
|
| 152 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
| 153 |
+
x = self.ups[i](x)
|
| 154 |
+
xs = None
|
| 155 |
+
for j in range(self.num_kernels):
|
| 156 |
+
if xs is None:
|
| 157 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 158 |
+
else:
|
| 159 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 160 |
+
x = xs / self.num_kernels
|
| 161 |
+
x = F.leaky_relu(x)
|
| 162 |
+
x = self.conv_post(x)
|
| 163 |
+
x = torch.tanh(x)
|
| 164 |
+
|
| 165 |
+
return x
|
| 166 |
+
|
| 167 |
+
def remove_weight_norm(self):
|
| 168 |
+
# print("Removing weight norm...")
|
| 169 |
+
for l in self.ups:
|
| 170 |
+
remove_weight_norm(l)
|
| 171 |
+
for l in self.resblocks:
|
| 172 |
+
l.remove_weight_norm()
|
| 173 |
+
remove_weight_norm(self.conv_pre)
|
| 174 |
+
remove_weight_norm(self.conv_post)
|
audioldm/hifigan/utilities.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
import audioldm.hifigan as hifigan
|
| 8 |
+
|
| 9 |
+
HIFIGAN_16K_64 = {
|
| 10 |
+
"resblock": "1",
|
| 11 |
+
"num_gpus": 6,
|
| 12 |
+
"batch_size": 16,
|
| 13 |
+
"learning_rate": 0.0002,
|
| 14 |
+
"adam_b1": 0.8,
|
| 15 |
+
"adam_b2": 0.99,
|
| 16 |
+
"lr_decay": 0.999,
|
| 17 |
+
"seed": 1234,
|
| 18 |
+
"upsample_rates": [5, 4, 2, 2, 2],
|
| 19 |
+
"upsample_kernel_sizes": [16, 16, 8, 4, 4],
|
| 20 |
+
"upsample_initial_channel": 1024,
|
| 21 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
| 22 |
+
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
| 23 |
+
"segment_size": 8192,
|
| 24 |
+
"num_mels": 64,
|
| 25 |
+
"num_freq": 1025,
|
| 26 |
+
"n_fft": 1024,
|
| 27 |
+
"hop_size": 160,
|
| 28 |
+
"win_size": 1024,
|
| 29 |
+
"sampling_rate": 16000,
|
| 30 |
+
"fmin": 0,
|
| 31 |
+
"fmax": 8000,
|
| 32 |
+
"fmax_for_loss": None,
|
| 33 |
+
"num_workers": 4,
|
| 34 |
+
"dist_config": {
|
| 35 |
+
"dist_backend": "nccl",
|
| 36 |
+
"dist_url": "tcp://localhost:54321",
|
| 37 |
+
"world_size": 1,
|
| 38 |
+
},
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def get_available_checkpoint_keys(model, ckpt):
|
| 43 |
+
print("==> Attemp to reload from %s" % ckpt)
|
| 44 |
+
state_dict = torch.load(ckpt)["state_dict"]
|
| 45 |
+
current_state_dict = model.state_dict()
|
| 46 |
+
new_state_dict = {}
|
| 47 |
+
for k in state_dict.keys():
|
| 48 |
+
if (
|
| 49 |
+
k in current_state_dict.keys()
|
| 50 |
+
and current_state_dict[k].size() == state_dict[k].size()
|
| 51 |
+
):
|
| 52 |
+
new_state_dict[k] = state_dict[k]
|
| 53 |
+
else:
|
| 54 |
+
print("==> WARNING: Skipping %s" % k)
|
| 55 |
+
print(
|
| 56 |
+
"%s out of %s keys are matched"
|
| 57 |
+
% (len(new_state_dict.keys()), len(state_dict.keys()))
|
| 58 |
+
)
|
| 59 |
+
return new_state_dict
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def get_param_num(model):
|
| 63 |
+
num_param = sum(param.numel() for param in model.parameters())
|
| 64 |
+
return num_param
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def get_vocoder(config, device):
|
| 68 |
+
config = hifigan.AttrDict(HIFIGAN_16K_64)
|
| 69 |
+
vocoder = hifigan.Generator(config)
|
| 70 |
+
vocoder.eval()
|
| 71 |
+
vocoder.remove_weight_norm()
|
| 72 |
+
vocoder.to(device)
|
| 73 |
+
return vocoder
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def vocoder_infer(mels, vocoder, lengths=None):
|
| 77 |
+
vocoder.eval()
|
| 78 |
+
with torch.no_grad():
|
| 79 |
+
wavs = vocoder(mels).squeeze(1)
|
| 80 |
+
|
| 81 |
+
wavs = (wavs.cpu().numpy() * 32768).astype("int16")
|
| 82 |
+
|
| 83 |
+
if lengths is not None:
|
| 84 |
+
wavs = wavs[:, :lengths]
|
| 85 |
+
|
| 86 |
+
return wavs
|
audioldm/latent_diffusion/__init__.py
ADDED
|
File without changes
|
audioldm/latent_diffusion/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (164 Bytes). View file
|
|
|
audioldm/latent_diffusion/__pycache__/attention.cpython-39.pyc
ADDED
|
Binary file (11.4 kB). View file
|
|
|
audioldm/latent_diffusion/__pycache__/ddim.cpython-39.pyc
ADDED
|
Binary file (7.11 kB). View file
|
|
|
audioldm/latent_diffusion/__pycache__/ddpm.cpython-39.pyc
ADDED
|
Binary file (11 kB). View file
|
|
|
audioldm/latent_diffusion/__pycache__/ema.cpython-39.pyc
ADDED
|
Binary file (3 kB). View file
|
|
|
audioldm/latent_diffusion/__pycache__/openaimodel.cpython-39.pyc
ADDED
|
Binary file (23.7 kB). View file
|
|
|
audioldm/latent_diffusion/__pycache__/util.cpython-39.pyc
ADDED
|
Binary file (9.6 kB). View file
|
|
|
audioldm/latent_diffusion/attention.py
ADDED
|
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from inspect import isfunction
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torch import nn
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
|
| 8 |
+
from audioldm.latent_diffusion.util import checkpoint
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def exists(val):
|
| 12 |
+
return val is not None
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def uniq(arr):
|
| 16 |
+
return {el: True for el in arr}.keys()
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def default(val, d):
|
| 20 |
+
if exists(val):
|
| 21 |
+
return val
|
| 22 |
+
return d() if isfunction(d) else d
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def max_neg_value(t):
|
| 26 |
+
return -torch.finfo(t.dtype).max
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def init_(tensor):
|
| 30 |
+
dim = tensor.shape[-1]
|
| 31 |
+
std = 1 / math.sqrt(dim)
|
| 32 |
+
tensor.uniform_(-std, std)
|
| 33 |
+
return tensor
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# feedforward
|
| 37 |
+
class GEGLU(nn.Module):
|
| 38 |
+
def __init__(self, dim_in, dim_out):
|
| 39 |
+
super().__init__()
|
| 40 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
| 41 |
+
|
| 42 |
+
def forward(self, x):
|
| 43 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
| 44 |
+
return x * F.gelu(gate)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class FeedForward(nn.Module):
|
| 48 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
| 49 |
+
super().__init__()
|
| 50 |
+
inner_dim = int(dim * mult)
|
| 51 |
+
dim_out = default(dim_out, dim)
|
| 52 |
+
project_in = (
|
| 53 |
+
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
| 54 |
+
if not glu
|
| 55 |
+
else GEGLU(dim, inner_dim)
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
self.net = nn.Sequential(
|
| 59 |
+
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
def forward(self, x):
|
| 63 |
+
return self.net(x)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def zero_module(module):
|
| 67 |
+
"""
|
| 68 |
+
Zero out the parameters of a module and return it.
|
| 69 |
+
"""
|
| 70 |
+
for p in module.parameters():
|
| 71 |
+
p.detach().zero_()
|
| 72 |
+
return module
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def Normalize(in_channels):
|
| 76 |
+
return torch.nn.GroupNorm(
|
| 77 |
+
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class LinearAttention(nn.Module):
|
| 82 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
| 83 |
+
super().__init__()
|
| 84 |
+
self.heads = heads
|
| 85 |
+
hidden_dim = dim_head * heads
|
| 86 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
|
| 87 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
| 88 |
+
|
| 89 |
+
def forward(self, x):
|
| 90 |
+
b, c, h, w = x.shape
|
| 91 |
+
qkv = self.to_qkv(x)
|
| 92 |
+
q, k, v = rearrange(
|
| 93 |
+
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3
|
| 94 |
+
)
|
| 95 |
+
k = k.softmax(dim=-1)
|
| 96 |
+
context = torch.einsum("bhdn,bhen->bhde", k, v)
|
| 97 |
+
out = torch.einsum("bhde,bhdn->bhen", context, q)
|
| 98 |
+
out = rearrange(
|
| 99 |
+
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w
|
| 100 |
+
)
|
| 101 |
+
return self.to_out(out)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class SpatialSelfAttention(nn.Module):
|
| 105 |
+
def __init__(self, in_channels):
|
| 106 |
+
super().__init__()
|
| 107 |
+
self.in_channels = in_channels
|
| 108 |
+
|
| 109 |
+
self.norm = Normalize(in_channels)
|
| 110 |
+
self.q = torch.nn.Conv2d(
|
| 111 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 112 |
+
)
|
| 113 |
+
self.k = torch.nn.Conv2d(
|
| 114 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 115 |
+
)
|
| 116 |
+
self.v = torch.nn.Conv2d(
|
| 117 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 118 |
+
)
|
| 119 |
+
self.proj_out = torch.nn.Conv2d(
|
| 120 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
def forward(self, x):
|
| 124 |
+
h_ = x
|
| 125 |
+
h_ = self.norm(h_)
|
| 126 |
+
q = self.q(h_)
|
| 127 |
+
k = self.k(h_)
|
| 128 |
+
v = self.v(h_)
|
| 129 |
+
|
| 130 |
+
# compute attention
|
| 131 |
+
b, c, h, w = q.shape
|
| 132 |
+
q = rearrange(q, "b c h w -> b (h w) c")
|
| 133 |
+
k = rearrange(k, "b c h w -> b c (h w)")
|
| 134 |
+
w_ = torch.einsum("bij,bjk->bik", q, k)
|
| 135 |
+
|
| 136 |
+
w_ = w_ * (int(c) ** (-0.5))
|
| 137 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 138 |
+
|
| 139 |
+
# attend to values
|
| 140 |
+
v = rearrange(v, "b c h w -> b c (h w)")
|
| 141 |
+
w_ = rearrange(w_, "b i j -> b j i")
|
| 142 |
+
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
| 143 |
+
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
| 144 |
+
h_ = self.proj_out(h_)
|
| 145 |
+
|
| 146 |
+
return x + h_
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
class CrossAttention(nn.Module):
|
| 150 |
+
"""
|
| 151 |
+
### Cross Attention Layer
|
| 152 |
+
This falls-back to self-attention when conditional embeddings are not specified.
|
| 153 |
+
"""
|
| 154 |
+
|
| 155 |
+
# use_flash_attention: bool = True
|
| 156 |
+
use_flash_attention: bool = False
|
| 157 |
+
|
| 158 |
+
def __init__(
|
| 159 |
+
self,
|
| 160 |
+
query_dim,
|
| 161 |
+
context_dim=None,
|
| 162 |
+
heads=8,
|
| 163 |
+
dim_head=64,
|
| 164 |
+
dropout=0.0,
|
| 165 |
+
is_inplace: bool = True,
|
| 166 |
+
):
|
| 167 |
+
# def __init__(self, d_model: int, d_cond: int, n_heads: int, d_head: int, is_inplace: bool = True):
|
| 168 |
+
"""
|
| 169 |
+
:param d_model: is the input embedding size
|
| 170 |
+
:param n_heads: is the number of attention heads
|
| 171 |
+
:param d_head: is the size of a attention head
|
| 172 |
+
:param d_cond: is the size of the conditional embeddings
|
| 173 |
+
:param is_inplace: specifies whether to perform the attention softmax computation inplace to
|
| 174 |
+
save memory
|
| 175 |
+
"""
|
| 176 |
+
super().__init__()
|
| 177 |
+
|
| 178 |
+
self.is_inplace = is_inplace
|
| 179 |
+
self.n_heads = heads
|
| 180 |
+
self.d_head = dim_head
|
| 181 |
+
|
| 182 |
+
# Attention scaling factor
|
| 183 |
+
self.scale = dim_head**-0.5
|
| 184 |
+
|
| 185 |
+
# The normal self-attention layer
|
| 186 |
+
if context_dim is None:
|
| 187 |
+
context_dim = query_dim
|
| 188 |
+
|
| 189 |
+
# Query, key and value mappings
|
| 190 |
+
d_attn = dim_head * heads
|
| 191 |
+
self.to_q = nn.Linear(query_dim, d_attn, bias=False)
|
| 192 |
+
self.to_k = nn.Linear(context_dim, d_attn, bias=False)
|
| 193 |
+
self.to_v = nn.Linear(context_dim, d_attn, bias=False)
|
| 194 |
+
|
| 195 |
+
# Final linear layer
|
| 196 |
+
self.to_out = nn.Sequential(nn.Linear(d_attn, query_dim), nn.Dropout(dropout))
|
| 197 |
+
|
| 198 |
+
# Setup [flash attention](https://github.com/HazyResearch/flash-attention).
|
| 199 |
+
# Flash attention is only used if it's installed
|
| 200 |
+
# and `CrossAttention.use_flash_attention` is set to `True`.
|
| 201 |
+
try:
|
| 202 |
+
# You can install flash attention by cloning their Github repo,
|
| 203 |
+
# [https://github.com/HazyResearch/flash-attention](https://github.com/HazyResearch/flash-attention)
|
| 204 |
+
# and then running `python setup.py install`
|
| 205 |
+
from flash_attn.flash_attention import FlashAttention
|
| 206 |
+
|
| 207 |
+
self.flash = FlashAttention()
|
| 208 |
+
# Set the scale for scaled dot-product attention.
|
| 209 |
+
self.flash.softmax_scale = self.scale
|
| 210 |
+
# Set to `None` if it's not installed
|
| 211 |
+
except ImportError:
|
| 212 |
+
self.flash = None
|
| 213 |
+
|
| 214 |
+
def forward(self, x, context=None, mask=None):
|
| 215 |
+
"""
|
| 216 |
+
:param x: are the input embeddings of shape `[batch_size, height * width, d_model]`
|
| 217 |
+
:param cond: is the conditional embeddings of shape `[batch_size, n_cond, d_cond]`
|
| 218 |
+
"""
|
| 219 |
+
|
| 220 |
+
# If `cond` is `None` we perform self attention
|
| 221 |
+
has_cond = context is not None
|
| 222 |
+
if not has_cond:
|
| 223 |
+
context = x
|
| 224 |
+
|
| 225 |
+
# Get query, key and value vectors
|
| 226 |
+
q = self.to_q(x)
|
| 227 |
+
k = self.to_k(context)
|
| 228 |
+
v = self.to_v(context)
|
| 229 |
+
|
| 230 |
+
# Use flash attention if it's available and the head size is less than or equal to `128`
|
| 231 |
+
if (
|
| 232 |
+
CrossAttention.use_flash_attention
|
| 233 |
+
and self.flash is not None
|
| 234 |
+
and not has_cond
|
| 235 |
+
and self.d_head <= 128
|
| 236 |
+
):
|
| 237 |
+
return self.flash_attention(q, k, v)
|
| 238 |
+
# Otherwise, fallback to normal attention
|
| 239 |
+
else:
|
| 240 |
+
return self.normal_attention(q, k, v)
|
| 241 |
+
|
| 242 |
+
def flash_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
|
| 243 |
+
"""
|
| 244 |
+
#### Flash Attention
|
| 245 |
+
:param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
|
| 246 |
+
:param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
|
| 247 |
+
:param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
|
| 248 |
+
"""
|
| 249 |
+
|
| 250 |
+
# Get batch size and number of elements along sequence axis (`width * height`)
|
| 251 |
+
batch_size, seq_len, _ = q.shape
|
| 252 |
+
|
| 253 |
+
# Stack `q`, `k`, `v` vectors for flash attention, to get a single tensor of
|
| 254 |
+
# shape `[batch_size, seq_len, 3, n_heads * d_head]`
|
| 255 |
+
qkv = torch.stack((q, k, v), dim=2)
|
| 256 |
+
# Split the heads
|
| 257 |
+
qkv = qkv.view(batch_size, seq_len, 3, self.n_heads, self.d_head)
|
| 258 |
+
|
| 259 |
+
# Flash attention works for head sizes `32`, `64` and `128`, so we have to pad the heads to
|
| 260 |
+
# fit this size.
|
| 261 |
+
if self.d_head <= 32:
|
| 262 |
+
pad = 32 - self.d_head
|
| 263 |
+
elif self.d_head <= 64:
|
| 264 |
+
pad = 64 - self.d_head
|
| 265 |
+
elif self.d_head <= 128:
|
| 266 |
+
pad = 128 - self.d_head
|
| 267 |
+
else:
|
| 268 |
+
raise ValueError(f"Head size ${self.d_head} too large for Flash Attention")
|
| 269 |
+
|
| 270 |
+
# Pad the heads
|
| 271 |
+
if pad:
|
| 272 |
+
qkv = torch.cat(
|
| 273 |
+
(qkv, qkv.new_zeros(batch_size, seq_len, 3, self.n_heads, pad)), dim=-1
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
# Compute attention
|
| 277 |
+
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$
|
| 278 |
+
# This gives a tensor of shape `[batch_size, seq_len, n_heads, d_padded]`
|
| 279 |
+
# TODO here I add the dtype changing
|
| 280 |
+
out, _ = self.flash(qkv.type(torch.float16))
|
| 281 |
+
# Truncate the extra head size
|
| 282 |
+
out = out[:, :, :, : self.d_head].float()
|
| 283 |
+
# Reshape to `[batch_size, seq_len, n_heads * d_head]`
|
| 284 |
+
out = out.reshape(batch_size, seq_len, self.n_heads * self.d_head)
|
| 285 |
+
|
| 286 |
+
# Map to `[batch_size, height * width, d_model]` with a linear layer
|
| 287 |
+
return self.to_out(out)
|
| 288 |
+
|
| 289 |
+
def normal_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
|
| 290 |
+
"""
|
| 291 |
+
#### Normal Attention
|
| 292 |
+
|
| 293 |
+
:param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
|
| 294 |
+
:param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
|
| 295 |
+
:param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
|
| 296 |
+
"""
|
| 297 |
+
|
| 298 |
+
# Split them to heads of shape `[batch_size, seq_len, n_heads, d_head]`
|
| 299 |
+
q = q.view(*q.shape[:2], self.n_heads, -1) # [bs, 64, 20, 32]
|
| 300 |
+
k = k.view(*k.shape[:2], self.n_heads, -1) # [bs, 1, 20, 32]
|
| 301 |
+
v = v.view(*v.shape[:2], self.n_heads, -1)
|
| 302 |
+
|
| 303 |
+
# Calculate attention $\frac{Q K^\top}{\sqrt{d_{key}}}$
|
| 304 |
+
attn = torch.einsum("bihd,bjhd->bhij", q, k) * self.scale
|
| 305 |
+
|
| 306 |
+
# Compute softmax
|
| 307 |
+
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)$$
|
| 308 |
+
if self.is_inplace:
|
| 309 |
+
half = attn.shape[0] // 2
|
| 310 |
+
attn[half:] = attn[half:].softmax(dim=-1)
|
| 311 |
+
attn[:half] = attn[:half].softmax(dim=-1)
|
| 312 |
+
else:
|
| 313 |
+
attn = attn.softmax(dim=-1)
|
| 314 |
+
|
| 315 |
+
# Compute attention output
|
| 316 |
+
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$
|
| 317 |
+
# attn: [bs, 20, 64, 1]
|
| 318 |
+
# v: [bs, 1, 20, 32]
|
| 319 |
+
out = torch.einsum("bhij,bjhd->bihd", attn, v)
|
| 320 |
+
# Reshape to `[batch_size, height * width, n_heads * d_head]`
|
| 321 |
+
out = out.reshape(*out.shape[:2], -1)
|
| 322 |
+
# Map to `[batch_size, height * width, d_model]` with a linear layer
|
| 323 |
+
return self.to_out(out)
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
# class CrossAttention(nn.Module):
|
| 327 |
+
# def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
| 328 |
+
# super().__init__()
|
| 329 |
+
# inner_dim = dim_head * heads
|
| 330 |
+
# context_dim = default(context_dim, query_dim)
|
| 331 |
+
|
| 332 |
+
# self.scale = dim_head ** -0.5
|
| 333 |
+
# self.heads = heads
|
| 334 |
+
|
| 335 |
+
# self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 336 |
+
# self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 337 |
+
# self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 338 |
+
|
| 339 |
+
# self.to_out = nn.Sequential(
|
| 340 |
+
# nn.Linear(inner_dim, query_dim),
|
| 341 |
+
# nn.Dropout(dropout)
|
| 342 |
+
# )
|
| 343 |
+
|
| 344 |
+
# def forward(self, x, context=None, mask=None):
|
| 345 |
+
# h = self.heads
|
| 346 |
+
|
| 347 |
+
# q = self.to_q(x)
|
| 348 |
+
# context = default(context, x)
|
| 349 |
+
# k = self.to_k(context)
|
| 350 |
+
# v = self.to_v(context)
|
| 351 |
+
|
| 352 |
+
# q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
| 353 |
+
|
| 354 |
+
# sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
| 355 |
+
|
| 356 |
+
# if exists(mask):
|
| 357 |
+
# mask = rearrange(mask, 'b ... -> b (...)')
|
| 358 |
+
# max_neg_value = -torch.finfo(sim.dtype).max
|
| 359 |
+
# mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
| 360 |
+
# sim.masked_fill_(~mask, max_neg_value)
|
| 361 |
+
|
| 362 |
+
# # attention, what we cannot get enough of
|
| 363 |
+
# attn = sim.softmax(dim=-1)
|
| 364 |
+
|
| 365 |
+
# out = einsum('b i j, b j d -> b i d', attn, v)
|
| 366 |
+
# out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
| 367 |
+
# return self.to_out(out)
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
class BasicTransformerBlock(nn.Module):
|
| 371 |
+
def __init__(
|
| 372 |
+
self,
|
| 373 |
+
dim,
|
| 374 |
+
n_heads,
|
| 375 |
+
d_head,
|
| 376 |
+
dropout=0.0,
|
| 377 |
+
context_dim=None,
|
| 378 |
+
gated_ff=True,
|
| 379 |
+
checkpoint=True,
|
| 380 |
+
):
|
| 381 |
+
super().__init__()
|
| 382 |
+
self.attn1 = CrossAttention(
|
| 383 |
+
query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
| 384 |
+
) # is a self-attention
|
| 385 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
| 386 |
+
self.attn2 = CrossAttention(
|
| 387 |
+
query_dim=dim,
|
| 388 |
+
context_dim=context_dim,
|
| 389 |
+
heads=n_heads,
|
| 390 |
+
dim_head=d_head,
|
| 391 |
+
dropout=dropout,
|
| 392 |
+
) # is self-attn if context is none
|
| 393 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 394 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 395 |
+
self.norm3 = nn.LayerNorm(dim)
|
| 396 |
+
self.checkpoint = checkpoint
|
| 397 |
+
|
| 398 |
+
def forward(self, x, context=None):
|
| 399 |
+
if context is None:
|
| 400 |
+
return checkpoint(self._forward, (x,), self.parameters(), self.checkpoint)
|
| 401 |
+
else:
|
| 402 |
+
return checkpoint(
|
| 403 |
+
self._forward, (x, context), self.parameters(), self.checkpoint
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
def _forward(self, x, context=None):
|
| 407 |
+
x = self.attn1(self.norm1(x)) + x
|
| 408 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
| 409 |
+
x = self.ff(self.norm3(x)) + x
|
| 410 |
+
return x
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
class SpatialTransformer(nn.Module):
|
| 414 |
+
"""
|
| 415 |
+
Transformer block for image-like data.
|
| 416 |
+
First, project the input (aka embedding)
|
| 417 |
+
and reshape to b, t, d.
|
| 418 |
+
Then apply standard transformer action.
|
| 419 |
+
Finally, reshape to image
|
| 420 |
+
"""
|
| 421 |
+
|
| 422 |
+
def __init__(
|
| 423 |
+
self,
|
| 424 |
+
in_channels,
|
| 425 |
+
n_heads,
|
| 426 |
+
d_head,
|
| 427 |
+
depth=1,
|
| 428 |
+
dropout=0.0,
|
| 429 |
+
context_dim=None,
|
| 430 |
+
no_context=False,
|
| 431 |
+
):
|
| 432 |
+
super().__init__()
|
| 433 |
+
|
| 434 |
+
if no_context:
|
| 435 |
+
context_dim = None
|
| 436 |
+
|
| 437 |
+
self.in_channels = in_channels
|
| 438 |
+
inner_dim = n_heads * d_head
|
| 439 |
+
self.norm = Normalize(in_channels)
|
| 440 |
+
|
| 441 |
+
self.proj_in = nn.Conv2d(
|
| 442 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
self.transformer_blocks = nn.ModuleList(
|
| 446 |
+
[
|
| 447 |
+
BasicTransformerBlock(
|
| 448 |
+
inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim
|
| 449 |
+
)
|
| 450 |
+
for d in range(depth)
|
| 451 |
+
]
|
| 452 |
+
)
|
| 453 |
+
|
| 454 |
+
self.proj_out = zero_module(
|
| 455 |
+
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
def forward(self, x, context=None):
|
| 459 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
| 460 |
+
b, c, h, w = x.shape
|
| 461 |
+
x_in = x
|
| 462 |
+
x = self.norm(x)
|
| 463 |
+
x = self.proj_in(x)
|
| 464 |
+
x = rearrange(x, "b c h w -> b (h w) c")
|
| 465 |
+
for block in self.transformer_blocks:
|
| 466 |
+
x = block(x, context=context)
|
| 467 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
| 468 |
+
x = self.proj_out(x)
|
| 469 |
+
return x + x_in
|
audioldm/latent_diffusion/ddim.py
ADDED
|
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""SAMPLING ONLY."""
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
|
| 7 |
+
from audioldm.latent_diffusion.util import (
|
| 8 |
+
make_ddim_sampling_parameters,
|
| 9 |
+
make_ddim_timesteps,
|
| 10 |
+
noise_like,
|
| 11 |
+
extract_into_tensor,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class DDIMSampler(object):
|
| 16 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
| 17 |
+
super().__init__()
|
| 18 |
+
self.model = model
|
| 19 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
| 20 |
+
self.schedule = schedule
|
| 21 |
+
|
| 22 |
+
def register_buffer(self, name, attr):
|
| 23 |
+
if type(attr) == torch.Tensor:
|
| 24 |
+
if attr.device != torch.device("cuda"):
|
| 25 |
+
attr = attr.to(torch.device("cuda"))
|
| 26 |
+
setattr(self, name, attr)
|
| 27 |
+
|
| 28 |
+
def make_schedule(
|
| 29 |
+
self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
|
| 30 |
+
):
|
| 31 |
+
self.ddim_timesteps = make_ddim_timesteps(
|
| 32 |
+
ddim_discr_method=ddim_discretize,
|
| 33 |
+
num_ddim_timesteps=ddim_num_steps,
|
| 34 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
| 35 |
+
verbose=verbose,
|
| 36 |
+
)
|
| 37 |
+
alphas_cumprod = self.model.alphas_cumprod
|
| 38 |
+
assert (
|
| 39 |
+
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
| 40 |
+
), "alphas have to be defined for each timestep"
|
| 41 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
| 42 |
+
|
| 43 |
+
self.register_buffer("betas", to_torch(self.model.betas))
|
| 44 |
+
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
| 45 |
+
self.register_buffer(
|
| 46 |
+
"alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 50 |
+
self.register_buffer(
|
| 51 |
+
"sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
|
| 52 |
+
)
|
| 53 |
+
self.register_buffer(
|
| 54 |
+
"sqrt_one_minus_alphas_cumprod",
|
| 55 |
+
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
| 56 |
+
)
|
| 57 |
+
self.register_buffer(
|
| 58 |
+
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
|
| 59 |
+
)
|
| 60 |
+
self.register_buffer(
|
| 61 |
+
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
|
| 62 |
+
)
|
| 63 |
+
self.register_buffer(
|
| 64 |
+
"sqrt_recipm1_alphas_cumprod",
|
| 65 |
+
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# ddim sampling parameters
|
| 69 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
|
| 70 |
+
alphacums=alphas_cumprod.cpu(),
|
| 71 |
+
ddim_timesteps=self.ddim_timesteps,
|
| 72 |
+
eta=ddim_eta,
|
| 73 |
+
verbose=verbose,
|
| 74 |
+
)
|
| 75 |
+
self.register_buffer("ddim_sigmas", ddim_sigmas)
|
| 76 |
+
self.register_buffer("ddim_alphas", ddim_alphas)
|
| 77 |
+
self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
|
| 78 |
+
self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
|
| 79 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
| 80 |
+
(1 - self.alphas_cumprod_prev)
|
| 81 |
+
/ (1 - self.alphas_cumprod)
|
| 82 |
+
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
| 83 |
+
)
|
| 84 |
+
self.register_buffer(
|
| 85 |
+
"ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
@torch.no_grad()
|
| 89 |
+
def sample(
|
| 90 |
+
self,
|
| 91 |
+
S,
|
| 92 |
+
batch_size,
|
| 93 |
+
shape,
|
| 94 |
+
conditioning=None,
|
| 95 |
+
callback=None,
|
| 96 |
+
normals_sequence=None,
|
| 97 |
+
img_callback=None,
|
| 98 |
+
quantize_x0=False,
|
| 99 |
+
eta=0.0,
|
| 100 |
+
mask=None,
|
| 101 |
+
x0=None,
|
| 102 |
+
temperature=1.0,
|
| 103 |
+
noise_dropout=0.0,
|
| 104 |
+
score_corrector=None,
|
| 105 |
+
corrector_kwargs=None,
|
| 106 |
+
verbose=True,
|
| 107 |
+
x_T=None,
|
| 108 |
+
log_every_t=100,
|
| 109 |
+
unconditional_guidance_scale=1.0,
|
| 110 |
+
unconditional_conditioning=None,
|
| 111 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
| 112 |
+
**kwargs,
|
| 113 |
+
):
|
| 114 |
+
if conditioning is not None:
|
| 115 |
+
if isinstance(conditioning, dict):
|
| 116 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
| 117 |
+
if cbs != batch_size:
|
| 118 |
+
print(
|
| 119 |
+
f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
|
| 120 |
+
)
|
| 121 |
+
else:
|
| 122 |
+
if conditioning.shape[0] != batch_size:
|
| 123 |
+
print(
|
| 124 |
+
f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
| 128 |
+
# sampling
|
| 129 |
+
C, H, W = shape
|
| 130 |
+
size = (batch_size, C, H, W)
|
| 131 |
+
samples, intermediates = self.ddim_sampling(
|
| 132 |
+
conditioning,
|
| 133 |
+
size,
|
| 134 |
+
callback=callback,
|
| 135 |
+
img_callback=img_callback,
|
| 136 |
+
quantize_denoised=quantize_x0,
|
| 137 |
+
mask=mask,
|
| 138 |
+
x0=x0,
|
| 139 |
+
ddim_use_original_steps=False,
|
| 140 |
+
noise_dropout=noise_dropout,
|
| 141 |
+
temperature=temperature,
|
| 142 |
+
score_corrector=score_corrector,
|
| 143 |
+
corrector_kwargs=corrector_kwargs,
|
| 144 |
+
x_T=x_T,
|
| 145 |
+
log_every_t=log_every_t,
|
| 146 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 147 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 148 |
+
)
|
| 149 |
+
return samples, intermediates
|
| 150 |
+
|
| 151 |
+
@torch.no_grad()
|
| 152 |
+
def ddim_sampling(
|
| 153 |
+
self,
|
| 154 |
+
cond,
|
| 155 |
+
shape,
|
| 156 |
+
x_T=None,
|
| 157 |
+
ddim_use_original_steps=False,
|
| 158 |
+
callback=None,
|
| 159 |
+
timesteps=None,
|
| 160 |
+
quantize_denoised=False,
|
| 161 |
+
mask=None,
|
| 162 |
+
x0=None,
|
| 163 |
+
img_callback=None,
|
| 164 |
+
log_every_t=100,
|
| 165 |
+
temperature=1.0,
|
| 166 |
+
noise_dropout=0.0,
|
| 167 |
+
score_corrector=None,
|
| 168 |
+
corrector_kwargs=None,
|
| 169 |
+
unconditional_guidance_scale=1.0,
|
| 170 |
+
unconditional_conditioning=None,
|
| 171 |
+
):
|
| 172 |
+
device = self.model.betas.device
|
| 173 |
+
b = shape[0]
|
| 174 |
+
if x_T is None:
|
| 175 |
+
img = torch.randn(shape, device=device)
|
| 176 |
+
else:
|
| 177 |
+
img = x_T
|
| 178 |
+
|
| 179 |
+
if timesteps is None:
|
| 180 |
+
timesteps = (
|
| 181 |
+
self.ddpm_num_timesteps
|
| 182 |
+
if ddim_use_original_steps
|
| 183 |
+
else self.ddim_timesteps
|
| 184 |
+
)
|
| 185 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
| 186 |
+
subset_end = (
|
| 187 |
+
int(
|
| 188 |
+
min(timesteps / self.ddim_timesteps.shape[0], 1)
|
| 189 |
+
* self.ddim_timesteps.shape[0]
|
| 190 |
+
)
|
| 191 |
+
- 1
|
| 192 |
+
)
|
| 193 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
| 194 |
+
|
| 195 |
+
intermediates = {"x_inter": [img], "pred_x0": [img]}
|
| 196 |
+
time_range = (
|
| 197 |
+
reversed(range(0, timesteps))
|
| 198 |
+
if ddim_use_original_steps
|
| 199 |
+
else np.flip(timesteps)
|
| 200 |
+
)
|
| 201 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
| 202 |
+
# print(f"Running DDIM Sampling with {total_steps} timesteps")
|
| 203 |
+
|
| 204 |
+
# iterator = gr.Progress().tqdm(time_range, desc="DDIM Sampler", total=total_steps)
|
| 205 |
+
iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps, leave=False)
|
| 206 |
+
|
| 207 |
+
for i, step in enumerate(iterator):
|
| 208 |
+
index = total_steps - i - 1
|
| 209 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
| 210 |
+
if mask is not None:
|
| 211 |
+
assert x0 is not None
|
| 212 |
+
img_orig = self.model.q_sample(
|
| 213 |
+
x0, ts
|
| 214 |
+
) # TODO deterministic forward pass?
|
| 215 |
+
img = (
|
| 216 |
+
img_orig * mask + (1.0 - mask) * img
|
| 217 |
+
) # In the first sampling step, img is pure gaussian noise
|
| 218 |
+
|
| 219 |
+
outs = self.p_sample_ddim(
|
| 220 |
+
img,
|
| 221 |
+
cond,
|
| 222 |
+
ts,
|
| 223 |
+
index=index,
|
| 224 |
+
use_original_steps=ddim_use_original_steps,
|
| 225 |
+
quantize_denoised=quantize_denoised,
|
| 226 |
+
temperature=temperature,
|
| 227 |
+
noise_dropout=noise_dropout,
|
| 228 |
+
score_corrector=score_corrector,
|
| 229 |
+
corrector_kwargs=corrector_kwargs,
|
| 230 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 231 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 232 |
+
)
|
| 233 |
+
img, pred_x0 = outs
|
| 234 |
+
if callback:
|
| 235 |
+
callback(i)
|
| 236 |
+
if img_callback:
|
| 237 |
+
img_callback(pred_x0, i)
|
| 238 |
+
|
| 239 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
| 240 |
+
intermediates["x_inter"].append(img)
|
| 241 |
+
intermediates["pred_x0"].append(pred_x0)
|
| 242 |
+
|
| 243 |
+
return img, intermediates
|
| 244 |
+
|
| 245 |
+
@torch.no_grad()
|
| 246 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
| 247 |
+
# fast, but does not allow for exact reconstruction
|
| 248 |
+
# t serves as an index to gather the correct alphas
|
| 249 |
+
if use_original_steps:
|
| 250 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
| 251 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
| 252 |
+
else:
|
| 253 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
| 254 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
| 255 |
+
|
| 256 |
+
if noise is None:
|
| 257 |
+
noise = torch.randn_like(x0)
|
| 258 |
+
|
| 259 |
+
return (
|
| 260 |
+
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
|
| 261 |
+
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
@torch.no_grad()
|
| 265 |
+
def decode(
|
| 266 |
+
self,
|
| 267 |
+
x_latent,
|
| 268 |
+
cond,
|
| 269 |
+
t_start,
|
| 270 |
+
unconditional_guidance_scale=1.0,
|
| 271 |
+
unconditional_conditioning=None,
|
| 272 |
+
use_original_steps=False,
|
| 273 |
+
):
|
| 274 |
+
|
| 275 |
+
timesteps = (
|
| 276 |
+
np.arange(self.ddpm_num_timesteps)
|
| 277 |
+
if use_original_steps
|
| 278 |
+
else self.ddim_timesteps
|
| 279 |
+
)
|
| 280 |
+
timesteps = timesteps[:t_start]
|
| 281 |
+
|
| 282 |
+
time_range = np.flip(timesteps)
|
| 283 |
+
total_steps = timesteps.shape[0]
|
| 284 |
+
# print(f"Running DDIM Sampling with {total_steps} timesteps")
|
| 285 |
+
|
| 286 |
+
# iterator = gr.Progress().tqdm(time_range, desc="Decoding image", total=total_steps)
|
| 287 |
+
iterator = tqdm(time_range, desc="Decoding image", total=total_steps)
|
| 288 |
+
x_dec = x_latent
|
| 289 |
+
|
| 290 |
+
for i, step in enumerate(iterator):
|
| 291 |
+
index = total_steps - i - 1
|
| 292 |
+
ts = torch.full(
|
| 293 |
+
(x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long
|
| 294 |
+
)
|
| 295 |
+
x_dec, _ = self.p_sample_ddim(
|
| 296 |
+
x_dec,
|
| 297 |
+
cond,
|
| 298 |
+
ts,
|
| 299 |
+
index=index,
|
| 300 |
+
use_original_steps=use_original_steps,
|
| 301 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 302 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 303 |
+
)
|
| 304 |
+
return x_dec
|
| 305 |
+
|
| 306 |
+
@torch.no_grad()
|
| 307 |
+
def p_sample_ddim(
|
| 308 |
+
self,
|
| 309 |
+
x,
|
| 310 |
+
c,
|
| 311 |
+
t,
|
| 312 |
+
index,
|
| 313 |
+
repeat_noise=False,
|
| 314 |
+
use_original_steps=False,
|
| 315 |
+
quantize_denoised=False,
|
| 316 |
+
temperature=1.0,
|
| 317 |
+
noise_dropout=0.0,
|
| 318 |
+
score_corrector=None,
|
| 319 |
+
corrector_kwargs=None,
|
| 320 |
+
unconditional_guidance_scale=1.0,
|
| 321 |
+
unconditional_conditioning=None,
|
| 322 |
+
):
|
| 323 |
+
b, *_, device = *x.shape, x.device
|
| 324 |
+
|
| 325 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.0:
|
| 326 |
+
e_t = self.model.apply_model(x, t, c)
|
| 327 |
+
else:
|
| 328 |
+
x_in = torch.cat([x] * 2)
|
| 329 |
+
t_in = torch.cat([t] * 2)
|
| 330 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
| 331 |
+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
| 332 |
+
# When unconditional_guidance_scale == 1: only e_t
|
| 333 |
+
# When unconditional_guidance_scale == 0: only unconditional
|
| 334 |
+
# When unconditional_guidance_scale > 1: add more unconditional guidance
|
| 335 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
| 336 |
+
|
| 337 |
+
if score_corrector is not None:
|
| 338 |
+
assert self.model.parameterization == "eps"
|
| 339 |
+
e_t = score_corrector.modify_score(
|
| 340 |
+
self.model, e_t, x, t, c, **corrector_kwargs
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
| 344 |
+
alphas_prev = (
|
| 345 |
+
self.model.alphas_cumprod_prev
|
| 346 |
+
if use_original_steps
|
| 347 |
+
else self.ddim_alphas_prev
|
| 348 |
+
)
|
| 349 |
+
sqrt_one_minus_alphas = (
|
| 350 |
+
self.model.sqrt_one_minus_alphas_cumprod
|
| 351 |
+
if use_original_steps
|
| 352 |
+
else self.ddim_sqrt_one_minus_alphas
|
| 353 |
+
)
|
| 354 |
+
sigmas = (
|
| 355 |
+
self.model.ddim_sigmas_for_original_num_steps
|
| 356 |
+
if use_original_steps
|
| 357 |
+
else self.ddim_sigmas
|
| 358 |
+
)
|
| 359 |
+
# select parameters corresponding to the currently considered timestep
|
| 360 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
| 361 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
| 362 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
| 363 |
+
sqrt_one_minus_at = torch.full(
|
| 364 |
+
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
# current prediction for x_0
|
| 368 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
| 369 |
+
if quantize_denoised:
|
| 370 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
| 371 |
+
# direction pointing to x_t
|
| 372 |
+
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
| 373 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
| 374 |
+
if noise_dropout > 0.0:
|
| 375 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
| 376 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise # TODO
|
| 377 |
+
return x_prev, pred_x0
|
audioldm/latent_diffusion/ddpm.py
ADDED
|
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
wild mixture of
|
| 3 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
| 4 |
+
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
| 5 |
+
https://github.com/CompVis/taming-transformers
|
| 6 |
+
-- merci
|
| 7 |
+
"""
|
| 8 |
+
import sys
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn as nn
|
| 13 |
+
import numpy as np
|
| 14 |
+
from contextlib import contextmanager
|
| 15 |
+
from functools import partial
|
| 16 |
+
from tqdm import tqdm
|
| 17 |
+
|
| 18 |
+
from audioldm.utils import exists, default, count_params, instantiate_from_config
|
| 19 |
+
from audioldm.latent_diffusion.ema import LitEma
|
| 20 |
+
from audioldm.latent_diffusion.util import (
|
| 21 |
+
make_beta_schedule,
|
| 22 |
+
extract_into_tensor,
|
| 23 |
+
noise_like,
|
| 24 |
+
)
|
| 25 |
+
import soundfile as sf
|
| 26 |
+
import os
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
__conditioning_keys__ = {"concat": "c_concat", "crossattn": "c_crossattn", "adm": "y"}
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def disabled_train(self, mode=True):
|
| 33 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
| 34 |
+
does not change anymore."""
|
| 35 |
+
return self
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def uniform_on_device(r1, r2, shape, device):
|
| 39 |
+
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class DiffusionWrapper(nn.Module):
|
| 43 |
+
def __init__(self, diff_model_config, conditioning_key):
|
| 44 |
+
super().__init__()
|
| 45 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
| 46 |
+
self.conditioning_key = conditioning_key
|
| 47 |
+
assert self.conditioning_key in [
|
| 48 |
+
None,
|
| 49 |
+
"concat",
|
| 50 |
+
"crossattn",
|
| 51 |
+
"hybrid",
|
| 52 |
+
"adm",
|
| 53 |
+
"film",
|
| 54 |
+
]
|
| 55 |
+
|
| 56 |
+
def forward(
|
| 57 |
+
self, x, t, c_concat: list = None, c_crossattn: list = None, c_film: list = None
|
| 58 |
+
):
|
| 59 |
+
x = x.contiguous()
|
| 60 |
+
t = t.contiguous()
|
| 61 |
+
|
| 62 |
+
if self.conditioning_key is None:
|
| 63 |
+
out = self.diffusion_model(x, t)
|
| 64 |
+
elif self.conditioning_key == "concat":
|
| 65 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 66 |
+
out = self.diffusion_model(xc, t)
|
| 67 |
+
elif self.conditioning_key == "crossattn":
|
| 68 |
+
cc = torch.cat(c_crossattn, 1)
|
| 69 |
+
out = self.diffusion_model(x, t, context=cc)
|
| 70 |
+
elif self.conditioning_key == "hybrid":
|
| 71 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 72 |
+
cc = torch.cat(c_crossattn, 1)
|
| 73 |
+
out = self.diffusion_model(xc, t, context=cc)
|
| 74 |
+
elif (
|
| 75 |
+
self.conditioning_key == "film"
|
| 76 |
+
): # The condition is assumed to be a global token, which wil pass through a linear layer and added with the time embedding for the FILM
|
| 77 |
+
cc = c_film[0].squeeze(1) # only has one token
|
| 78 |
+
out = self.diffusion_model(x, t, y=cc)
|
| 79 |
+
elif self.conditioning_key == "adm":
|
| 80 |
+
cc = c_crossattn[0]
|
| 81 |
+
out = self.diffusion_model(x, t, y=cc)
|
| 82 |
+
else:
|
| 83 |
+
raise NotImplementedError()
|
| 84 |
+
|
| 85 |
+
return out
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
class DDPM(nn.Module):
|
| 89 |
+
# classic DDPM with Gaussian diffusion, in image space
|
| 90 |
+
def __init__(
|
| 91 |
+
self,
|
| 92 |
+
unet_config,
|
| 93 |
+
timesteps=1000,
|
| 94 |
+
beta_schedule="linear",
|
| 95 |
+
loss_type="l2",
|
| 96 |
+
ckpt_path=None,
|
| 97 |
+
ignore_keys=[],
|
| 98 |
+
load_only_unet=False,
|
| 99 |
+
monitor="val/loss",
|
| 100 |
+
use_ema=True,
|
| 101 |
+
first_stage_key="image",
|
| 102 |
+
latent_t_size=256,
|
| 103 |
+
latent_f_size=16,
|
| 104 |
+
channels=3,
|
| 105 |
+
log_every_t=100,
|
| 106 |
+
clip_denoised=True,
|
| 107 |
+
linear_start=1e-4,
|
| 108 |
+
linear_end=2e-2,
|
| 109 |
+
cosine_s=8e-3,
|
| 110 |
+
given_betas=None,
|
| 111 |
+
original_elbo_weight=0.0,
|
| 112 |
+
v_posterior=0.0, # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
| 113 |
+
l_simple_weight=1.0,
|
| 114 |
+
conditioning_key=None,
|
| 115 |
+
parameterization="eps", # all assuming fixed variance schedules
|
| 116 |
+
scheduler_config=None,
|
| 117 |
+
use_positional_encodings=False,
|
| 118 |
+
learn_logvar=False,
|
| 119 |
+
logvar_init=0.0,
|
| 120 |
+
):
|
| 121 |
+
super().__init__()
|
| 122 |
+
assert parameterization in [
|
| 123 |
+
"eps",
|
| 124 |
+
"x0",
|
| 125 |
+
], 'currently only supporting "eps" and "x0"'
|
| 126 |
+
self.parameterization = parameterization
|
| 127 |
+
self.state = None
|
| 128 |
+
# print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
| 129 |
+
self.cond_stage_model = None
|
| 130 |
+
self.clip_denoised = clip_denoised
|
| 131 |
+
self.log_every_t = log_every_t
|
| 132 |
+
self.first_stage_key = first_stage_key
|
| 133 |
+
|
| 134 |
+
self.latent_t_size = latent_t_size
|
| 135 |
+
self.latent_f_size = latent_f_size
|
| 136 |
+
|
| 137 |
+
self.channels = channels
|
| 138 |
+
self.use_positional_encodings = use_positional_encodings
|
| 139 |
+
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
| 140 |
+
count_params(self.model, verbose=True)
|
| 141 |
+
self.use_ema = use_ema
|
| 142 |
+
if self.use_ema:
|
| 143 |
+
self.model_ema = LitEma(self.model)
|
| 144 |
+
# print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
| 145 |
+
|
| 146 |
+
self.use_scheduler = scheduler_config is not None
|
| 147 |
+
if self.use_scheduler:
|
| 148 |
+
self.scheduler_config = scheduler_config
|
| 149 |
+
|
| 150 |
+
self.v_posterior = v_posterior
|
| 151 |
+
self.original_elbo_weight = original_elbo_weight
|
| 152 |
+
self.l_simple_weight = l_simple_weight
|
| 153 |
+
|
| 154 |
+
if monitor is not None:
|
| 155 |
+
self.monitor = monitor
|
| 156 |
+
|
| 157 |
+
self.register_schedule(
|
| 158 |
+
given_betas=given_betas,
|
| 159 |
+
beta_schedule=beta_schedule,
|
| 160 |
+
timesteps=timesteps,
|
| 161 |
+
linear_start=linear_start,
|
| 162 |
+
linear_end=linear_end,
|
| 163 |
+
cosine_s=cosine_s,
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
self.loss_type = loss_type
|
| 167 |
+
|
| 168 |
+
self.learn_logvar = learn_logvar
|
| 169 |
+
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
| 170 |
+
if self.learn_logvar:
|
| 171 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
| 172 |
+
else:
|
| 173 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=False)
|
| 174 |
+
|
| 175 |
+
self.logger_save_dir = None
|
| 176 |
+
self.logger_project = None
|
| 177 |
+
self.logger_version = None
|
| 178 |
+
self.label_indices_total = None
|
| 179 |
+
# To avoid the system cannot find metric value for checkpoint
|
| 180 |
+
self.metrics_buffer = {
|
| 181 |
+
"val/kullback_leibler_divergence_sigmoid": 15.0,
|
| 182 |
+
"val/kullback_leibler_divergence_softmax": 10.0,
|
| 183 |
+
"val/psnr": 0.0,
|
| 184 |
+
"val/ssim": 0.0,
|
| 185 |
+
"val/inception_score_mean": 1.0,
|
| 186 |
+
"val/inception_score_std": 0.0,
|
| 187 |
+
"val/kernel_inception_distance_mean": 0.0,
|
| 188 |
+
"val/kernel_inception_distance_std": 0.0,
|
| 189 |
+
"val/frechet_inception_distance": 133.0,
|
| 190 |
+
"val/frechet_audio_distance": 32.0,
|
| 191 |
+
}
|
| 192 |
+
self.initial_learning_rate = None
|
| 193 |
+
|
| 194 |
+
def get_log_dir(self):
|
| 195 |
+
if (
|
| 196 |
+
self.logger_save_dir is None
|
| 197 |
+
and self.logger_project is None
|
| 198 |
+
and self.logger_version is None
|
| 199 |
+
):
|
| 200 |
+
return os.path.join(
|
| 201 |
+
self.logger.save_dir, self.logger._project, self.logger.version
|
| 202 |
+
)
|
| 203 |
+
else:
|
| 204 |
+
return os.path.join(
|
| 205 |
+
self.logger_save_dir, self.logger_project, self.logger_version
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
def set_log_dir(self, save_dir, project, version):
|
| 209 |
+
self.logger_save_dir = save_dir
|
| 210 |
+
self.logger_project = project
|
| 211 |
+
self.logger_version = version
|
| 212 |
+
|
| 213 |
+
def register_schedule(
|
| 214 |
+
self,
|
| 215 |
+
given_betas=None,
|
| 216 |
+
beta_schedule="linear",
|
| 217 |
+
timesteps=1000,
|
| 218 |
+
linear_start=1e-4,
|
| 219 |
+
linear_end=2e-2,
|
| 220 |
+
cosine_s=8e-3,
|
| 221 |
+
):
|
| 222 |
+
if exists(given_betas):
|
| 223 |
+
betas = given_betas
|
| 224 |
+
else:
|
| 225 |
+
betas = make_beta_schedule(
|
| 226 |
+
beta_schedule,
|
| 227 |
+
timesteps,
|
| 228 |
+
linear_start=linear_start,
|
| 229 |
+
linear_end=linear_end,
|
| 230 |
+
cosine_s=cosine_s,
|
| 231 |
+
)
|
| 232 |
+
alphas = 1.0 - betas
|
| 233 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
| 234 |
+
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
|
| 235 |
+
|
| 236 |
+
(timesteps,) = betas.shape
|
| 237 |
+
self.num_timesteps = int(timesteps)
|
| 238 |
+
self.linear_start = linear_start
|
| 239 |
+
self.linear_end = linear_end
|
| 240 |
+
assert (
|
| 241 |
+
alphas_cumprod.shape[0] == self.num_timesteps
|
| 242 |
+
), "alphas have to be defined for each timestep"
|
| 243 |
+
|
| 244 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
| 245 |
+
|
| 246 |
+
self.register_buffer("betas", to_torch(betas))
|
| 247 |
+
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
| 248 |
+
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
|
| 249 |
+
|
| 250 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 251 |
+
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
|
| 252 |
+
self.register_buffer(
|
| 253 |
+
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
|
| 254 |
+
)
|
| 255 |
+
self.register_buffer(
|
| 256 |
+
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
|
| 257 |
+
)
|
| 258 |
+
self.register_buffer(
|
| 259 |
+
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
|
| 260 |
+
)
|
| 261 |
+
self.register_buffer(
|
| 262 |
+
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
| 266 |
+
posterior_variance = (1 - self.v_posterior) * betas * (
|
| 267 |
+
1.0 - alphas_cumprod_prev
|
| 268 |
+
) / (1.0 - alphas_cumprod) + self.v_posterior * betas
|
| 269 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
| 270 |
+
self.register_buffer("posterior_variance", to_torch(posterior_variance))
|
| 271 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
| 272 |
+
self.register_buffer(
|
| 273 |
+
"posterior_log_variance_clipped",
|
| 274 |
+
to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
|
| 275 |
+
)
|
| 276 |
+
self.register_buffer(
|
| 277 |
+
"posterior_mean_coef1",
|
| 278 |
+
to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)),
|
| 279 |
+
)
|
| 280 |
+
self.register_buffer(
|
| 281 |
+
"posterior_mean_coef2",
|
| 282 |
+
to_torch(
|
| 283 |
+
(1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
|
| 284 |
+
),
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
if self.parameterization == "eps":
|
| 288 |
+
lvlb_weights = self.betas**2 / (
|
| 289 |
+
2
|
| 290 |
+
* self.posterior_variance
|
| 291 |
+
* to_torch(alphas)
|
| 292 |
+
* (1 - self.alphas_cumprod)
|
| 293 |
+
)
|
| 294 |
+
elif self.parameterization == "x0":
|
| 295 |
+
lvlb_weights = (
|
| 296 |
+
0.5
|
| 297 |
+
* np.sqrt(torch.Tensor(alphas_cumprod))
|
| 298 |
+
/ (2.0 * 1 - torch.Tensor(alphas_cumprod))
|
| 299 |
+
)
|
| 300 |
+
else:
|
| 301 |
+
raise NotImplementedError("mu not supported")
|
| 302 |
+
# TODO how to choose this term
|
| 303 |
+
lvlb_weights[0] = lvlb_weights[1]
|
| 304 |
+
self.register_buffer("lvlb_weights", lvlb_weights, persistent=False)
|
| 305 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
| 306 |
+
|
| 307 |
+
@contextmanager
|
| 308 |
+
def ema_scope(self, context=None):
|
| 309 |
+
if self.use_ema:
|
| 310 |
+
self.model_ema.store(self.model.parameters())
|
| 311 |
+
self.model_ema.copy_to(self.model)
|
| 312 |
+
if context is not None:
|
| 313 |
+
# print(f"{context}: Switched to EMA weights")
|
| 314 |
+
pass
|
| 315 |
+
try:
|
| 316 |
+
yield None
|
| 317 |
+
finally:
|
| 318 |
+
if self.use_ema:
|
| 319 |
+
self.model_ema.restore(self.model.parameters())
|
| 320 |
+
if context is not None:
|
| 321 |
+
# print(f"{context}: Restored training weights")
|
| 322 |
+
pass
|
| 323 |
+
|
| 324 |
+
def q_mean_variance(self, x_start, t):
|
| 325 |
+
"""
|
| 326 |
+
Get the distribution q(x_t | x_0).
|
| 327 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
| 328 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
| 329 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
| 330 |
+
"""
|
| 331 |
+
mean = extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
| 332 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
| 333 |
+
log_variance = extract_into_tensor(
|
| 334 |
+
self.log_one_minus_alphas_cumprod, t, x_start.shape
|
| 335 |
+
)
|
| 336 |
+
return mean, variance, log_variance
|
| 337 |
+
|
| 338 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
| 339 |
+
return (
|
| 340 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
| 341 |
+
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
| 342 |
+
* noise
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
def q_posterior(self, x_start, x_t, t):
|
| 346 |
+
posterior_mean = (
|
| 347 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
|
| 348 |
+
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
| 349 |
+
)
|
| 350 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
| 351 |
+
posterior_log_variance_clipped = extract_into_tensor(
|
| 352 |
+
self.posterior_log_variance_clipped, t, x_t.shape
|
| 353 |
+
)
|
| 354 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
| 355 |
+
|
| 356 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
| 357 |
+
model_out = self.model(x, t)
|
| 358 |
+
if self.parameterization == "eps":
|
| 359 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
| 360 |
+
elif self.parameterization == "x0":
|
| 361 |
+
x_recon = model_out
|
| 362 |
+
if clip_denoised:
|
| 363 |
+
x_recon.clamp_(-1.0, 1.0)
|
| 364 |
+
|
| 365 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
|
| 366 |
+
x_start=x_recon, x_t=x, t=t
|
| 367 |
+
)
|
| 368 |
+
return model_mean, posterior_variance, posterior_log_variance
|
| 369 |
+
|
| 370 |
+
@torch.no_grad()
|
| 371 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
| 372 |
+
b, *_, device = *x.shape, x.device
|
| 373 |
+
model_mean, _, model_log_variance = self.p_mean_variance(
|
| 374 |
+
x=x, t=t, clip_denoised=clip_denoised
|
| 375 |
+
)
|
| 376 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
| 377 |
+
# no noise when t == 0
|
| 378 |
+
nonzero_mask = (
|
| 379 |
+
(1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous()
|
| 380 |
+
)
|
| 381 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
| 382 |
+
|
| 383 |
+
@torch.no_grad()
|
| 384 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
| 385 |
+
device = self.betas.device
|
| 386 |
+
b = shape[0]
|
| 387 |
+
img = torch.randn(shape, device=device)
|
| 388 |
+
intermediates = [img]
|
| 389 |
+
for i in tqdm(
|
| 390 |
+
reversed(range(0, self.num_timesteps)),
|
| 391 |
+
desc="Sampling t",
|
| 392 |
+
total=self.num_timesteps,
|
| 393 |
+
):
|
| 394 |
+
img = self.p_sample(
|
| 395 |
+
img,
|
| 396 |
+
torch.full((b,), i, device=device, dtype=torch.long),
|
| 397 |
+
clip_denoised=self.clip_denoised,
|
| 398 |
+
)
|
| 399 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
| 400 |
+
intermediates.append(img)
|
| 401 |
+
if return_intermediates:
|
| 402 |
+
return img, intermediates
|
| 403 |
+
return img
|
| 404 |
+
|
| 405 |
+
@torch.no_grad()
|
| 406 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
| 407 |
+
shape = (batch_size, channels, self.latent_t_size, self.latent_f_size)
|
| 408 |
+
channels = self.channels
|
| 409 |
+
return self.p_sample_loop(shape, return_intermediates=return_intermediates)
|
| 410 |
+
|
| 411 |
+
def q_sample(self, x_start, t, noise=None):
|
| 412 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 413 |
+
return (
|
| 414 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
| 415 |
+
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
|
| 416 |
+
* noise
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
def forward(self, x, *args, **kwargs):
|
| 420 |
+
t = torch.randint(
|
| 421 |
+
0, self.num_timesteps, (x.shape[0],), device=self.device
|
| 422 |
+
).long()
|
| 423 |
+
return self.p_losses(x, t, *args, **kwargs)
|
| 424 |
+
|
| 425 |
+
def get_input(self, batch, k):
|
| 426 |
+
# fbank, log_magnitudes_stft, label_indices, fname, waveform, clip_label, text = batch
|
| 427 |
+
fbank, log_magnitudes_stft, label_indices, fname, waveform, text = batch
|
| 428 |
+
ret = {}
|
| 429 |
+
|
| 430 |
+
ret["fbank"] = (
|
| 431 |
+
fbank.unsqueeze(1).to(memory_format=torch.contiguous_format).float()
|
| 432 |
+
)
|
| 433 |
+
ret["stft"] = log_magnitudes_stft.to(
|
| 434 |
+
memory_format=torch.contiguous_format
|
| 435 |
+
).float()
|
| 436 |
+
# ret["clip_label"] = clip_label.to(memory_format=torch.contiguous_format).float()
|
| 437 |
+
ret["waveform"] = waveform.to(memory_format=torch.contiguous_format).float()
|
| 438 |
+
ret["text"] = list(text)
|
| 439 |
+
ret["fname"] = fname
|
| 440 |
+
|
| 441 |
+
return ret[k]
|
audioldm/latent_diffusion/ema.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class LitEma(nn.Module):
|
| 6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
| 7 |
+
super().__init__()
|
| 8 |
+
if decay < 0.0 or decay > 1.0:
|
| 9 |
+
raise ValueError("Decay must be between 0 and 1")
|
| 10 |
+
|
| 11 |
+
self.m_name2s_name = {}
|
| 12 |
+
self.register_buffer("decay", torch.tensor(decay, dtype=torch.float32))
|
| 13 |
+
self.register_buffer(
|
| 14 |
+
"num_updates",
|
| 15 |
+
torch.tensor(0, dtype=torch.int)
|
| 16 |
+
if use_num_upates
|
| 17 |
+
else torch.tensor(-1, dtype=torch.int),
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
for name, p in model.named_parameters():
|
| 21 |
+
if p.requires_grad:
|
| 22 |
+
# remove as '.'-character is not allowed in buffers
|
| 23 |
+
s_name = name.replace(".", "")
|
| 24 |
+
self.m_name2s_name.update({name: s_name})
|
| 25 |
+
self.register_buffer(s_name, p.clone().detach().data)
|
| 26 |
+
|
| 27 |
+
self.collected_params = []
|
| 28 |
+
|
| 29 |
+
def forward(self, model):
|
| 30 |
+
decay = self.decay
|
| 31 |
+
|
| 32 |
+
if self.num_updates >= 0:
|
| 33 |
+
self.num_updates += 1
|
| 34 |
+
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
|
| 35 |
+
|
| 36 |
+
one_minus_decay = 1.0 - decay
|
| 37 |
+
|
| 38 |
+
with torch.no_grad():
|
| 39 |
+
m_param = dict(model.named_parameters())
|
| 40 |
+
shadow_params = dict(self.named_buffers())
|
| 41 |
+
|
| 42 |
+
for key in m_param:
|
| 43 |
+
if m_param[key].requires_grad:
|
| 44 |
+
sname = self.m_name2s_name[key]
|
| 45 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
| 46 |
+
shadow_params[sname].sub_(
|
| 47 |
+
one_minus_decay * (shadow_params[sname] - m_param[key])
|
| 48 |
+
)
|
| 49 |
+
else:
|
| 50 |
+
assert not key in self.m_name2s_name
|
| 51 |
+
|
| 52 |
+
def copy_to(self, model):
|
| 53 |
+
m_param = dict(model.named_parameters())
|
| 54 |
+
shadow_params = dict(self.named_buffers())
|
| 55 |
+
for key in m_param:
|
| 56 |
+
if m_param[key].requires_grad:
|
| 57 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
| 58 |
+
else:
|
| 59 |
+
assert not key in self.m_name2s_name
|
| 60 |
+
|
| 61 |
+
def store(self, parameters):
|
| 62 |
+
"""
|
| 63 |
+
Save the current parameters for restoring later.
|
| 64 |
+
Args:
|
| 65 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
| 66 |
+
temporarily stored.
|
| 67 |
+
"""
|
| 68 |
+
self.collected_params = [param.clone() for param in parameters]
|
| 69 |
+
|
| 70 |
+
def restore(self, parameters):
|
| 71 |
+
"""
|
| 72 |
+
Restore the parameters stored with the `store` method.
|
| 73 |
+
Useful to validate the model with EMA parameters without affecting the
|
| 74 |
+
original optimization process. Store the parameters before the
|
| 75 |
+
`copy_to` method. After validation (or model saving), use this to
|
| 76 |
+
restore the former parameters.
|
| 77 |
+
Args:
|
| 78 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
| 79 |
+
updated with the stored parameters.
|
| 80 |
+
"""
|
| 81 |
+
for c_param, param in zip(self.collected_params, parameters):
|
| 82 |
+
param.data.copy_(c_param.data)
|
audioldm/latent_diffusion/openaimodel.py
ADDED
|
@@ -0,0 +1,1069 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import abstractmethod
|
| 2 |
+
import math
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch as th
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
|
| 9 |
+
from audioldm.latent_diffusion.util import (
|
| 10 |
+
checkpoint,
|
| 11 |
+
conv_nd,
|
| 12 |
+
linear,
|
| 13 |
+
avg_pool_nd,
|
| 14 |
+
zero_module,
|
| 15 |
+
normalization,
|
| 16 |
+
timestep_embedding,
|
| 17 |
+
)
|
| 18 |
+
from audioldm.latent_diffusion.attention import SpatialTransformer
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# dummy replace
|
| 22 |
+
def convert_module_to_f16(x):
|
| 23 |
+
pass
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def convert_module_to_f32(x):
|
| 27 |
+
pass
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
## go
|
| 31 |
+
class AttentionPool2d(nn.Module):
|
| 32 |
+
"""
|
| 33 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
def __init__(
|
| 37 |
+
self,
|
| 38 |
+
spacial_dim: int,
|
| 39 |
+
embed_dim: int,
|
| 40 |
+
num_heads_channels: int,
|
| 41 |
+
output_dim: int = None,
|
| 42 |
+
):
|
| 43 |
+
super().__init__()
|
| 44 |
+
self.positional_embedding = nn.Parameter(
|
| 45 |
+
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5
|
| 46 |
+
)
|
| 47 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
| 48 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
| 49 |
+
self.num_heads = embed_dim // num_heads_channels
|
| 50 |
+
self.attention = QKVAttention(self.num_heads)
|
| 51 |
+
|
| 52 |
+
def forward(self, x):
|
| 53 |
+
b, c, *_spatial = x.shape
|
| 54 |
+
x = x.reshape(b, c, -1).contiguous() # NC(HW)
|
| 55 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
| 56 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
| 57 |
+
x = self.qkv_proj(x)
|
| 58 |
+
x = self.attention(x)
|
| 59 |
+
x = self.c_proj(x)
|
| 60 |
+
return x[:, :, 0]
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class TimestepBlock(nn.Module):
|
| 64 |
+
"""
|
| 65 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
| 66 |
+
"""
|
| 67 |
+
|
| 68 |
+
@abstractmethod
|
| 69 |
+
def forward(self, x, emb):
|
| 70 |
+
"""
|
| 71 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
| 76 |
+
"""
|
| 77 |
+
A sequential module that passes timestep embeddings to the children that
|
| 78 |
+
support it as an extra input.
|
| 79 |
+
"""
|
| 80 |
+
|
| 81 |
+
def forward(self, x, emb, context=None):
|
| 82 |
+
for layer in self:
|
| 83 |
+
if isinstance(layer, TimestepBlock):
|
| 84 |
+
x = layer(x, emb)
|
| 85 |
+
elif isinstance(layer, SpatialTransformer):
|
| 86 |
+
x = layer(x, context)
|
| 87 |
+
else:
|
| 88 |
+
x = layer(x)
|
| 89 |
+
return x
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class Upsample(nn.Module):
|
| 93 |
+
"""
|
| 94 |
+
An upsampling layer with an optional convolution.
|
| 95 |
+
:param channels: channels in the inputs and outputs.
|
| 96 |
+
:param use_conv: a bool determining if a convolution is applied.
|
| 97 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 98 |
+
upsampling occurs in the inner-two dimensions.
|
| 99 |
+
"""
|
| 100 |
+
|
| 101 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
| 102 |
+
super().__init__()
|
| 103 |
+
self.channels = channels
|
| 104 |
+
self.out_channels = out_channels or channels
|
| 105 |
+
self.use_conv = use_conv
|
| 106 |
+
self.dims = dims
|
| 107 |
+
if use_conv:
|
| 108 |
+
self.conv = conv_nd(
|
| 109 |
+
dims, self.channels, self.out_channels, 3, padding=padding
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
def forward(self, x):
|
| 113 |
+
assert x.shape[1] == self.channels
|
| 114 |
+
if self.dims == 3:
|
| 115 |
+
x = F.interpolate(
|
| 116 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
| 117 |
+
)
|
| 118 |
+
else:
|
| 119 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
| 120 |
+
if self.use_conv:
|
| 121 |
+
x = self.conv(x)
|
| 122 |
+
return x
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
class TransposedUpsample(nn.Module):
|
| 126 |
+
"Learned 2x upsampling without padding"
|
| 127 |
+
|
| 128 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
| 129 |
+
super().__init__()
|
| 130 |
+
self.channels = channels
|
| 131 |
+
self.out_channels = out_channels or channels
|
| 132 |
+
|
| 133 |
+
self.up = nn.ConvTranspose2d(
|
| 134 |
+
self.channels, self.out_channels, kernel_size=ks, stride=2
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
def forward(self, x):
|
| 138 |
+
return self.up(x)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
class Downsample(nn.Module):
|
| 142 |
+
"""
|
| 143 |
+
A downsampling layer with an optional convolution.
|
| 144 |
+
:param channels: channels in the inputs and outputs.
|
| 145 |
+
:param use_conv: a bool determining if a convolution is applied.
|
| 146 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 147 |
+
downsampling occurs in the inner-two dimensions.
|
| 148 |
+
"""
|
| 149 |
+
|
| 150 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
| 151 |
+
super().__init__()
|
| 152 |
+
self.channels = channels
|
| 153 |
+
self.out_channels = out_channels or channels
|
| 154 |
+
self.use_conv = use_conv
|
| 155 |
+
self.dims = dims
|
| 156 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
| 157 |
+
if use_conv:
|
| 158 |
+
self.op = conv_nd(
|
| 159 |
+
dims,
|
| 160 |
+
self.channels,
|
| 161 |
+
self.out_channels,
|
| 162 |
+
3,
|
| 163 |
+
stride=stride,
|
| 164 |
+
padding=padding,
|
| 165 |
+
)
|
| 166 |
+
else:
|
| 167 |
+
assert self.channels == self.out_channels
|
| 168 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
| 169 |
+
|
| 170 |
+
def forward(self, x):
|
| 171 |
+
assert x.shape[1] == self.channels
|
| 172 |
+
return self.op(x)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
class ResBlock(TimestepBlock):
|
| 176 |
+
"""
|
| 177 |
+
A residual block that can optionally change the number of channels.
|
| 178 |
+
:param channels: the number of input channels.
|
| 179 |
+
:param emb_channels: the number of timestep embedding channels.
|
| 180 |
+
:param dropout: the rate of dropout.
|
| 181 |
+
:param out_channels: if specified, the number of out channels.
|
| 182 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
| 183 |
+
convolution instead of a smaller 1x1 convolution to change the
|
| 184 |
+
channels in the skip connection.
|
| 185 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 186 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
| 187 |
+
:param up: if True, use this block for upsampling.
|
| 188 |
+
:param down: if True, use this block for downsampling.
|
| 189 |
+
"""
|
| 190 |
+
|
| 191 |
+
def __init__(
|
| 192 |
+
self,
|
| 193 |
+
channels,
|
| 194 |
+
emb_channels,
|
| 195 |
+
dropout,
|
| 196 |
+
out_channels=None,
|
| 197 |
+
use_conv=False,
|
| 198 |
+
use_scale_shift_norm=False,
|
| 199 |
+
dims=2,
|
| 200 |
+
use_checkpoint=False,
|
| 201 |
+
up=False,
|
| 202 |
+
down=False,
|
| 203 |
+
):
|
| 204 |
+
super().__init__()
|
| 205 |
+
self.channels = channels
|
| 206 |
+
self.emb_channels = emb_channels
|
| 207 |
+
self.dropout = dropout
|
| 208 |
+
self.out_channels = out_channels or channels
|
| 209 |
+
self.use_conv = use_conv
|
| 210 |
+
self.use_checkpoint = use_checkpoint
|
| 211 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
| 212 |
+
|
| 213 |
+
self.in_layers = nn.Sequential(
|
| 214 |
+
normalization(channels),
|
| 215 |
+
nn.SiLU(),
|
| 216 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
self.updown = up or down
|
| 220 |
+
|
| 221 |
+
if up:
|
| 222 |
+
self.h_upd = Upsample(channels, False, dims)
|
| 223 |
+
self.x_upd = Upsample(channels, False, dims)
|
| 224 |
+
elif down:
|
| 225 |
+
self.h_upd = Downsample(channels, False, dims)
|
| 226 |
+
self.x_upd = Downsample(channels, False, dims)
|
| 227 |
+
else:
|
| 228 |
+
self.h_upd = self.x_upd = nn.Identity()
|
| 229 |
+
|
| 230 |
+
self.emb_layers = nn.Sequential(
|
| 231 |
+
nn.SiLU(),
|
| 232 |
+
linear(
|
| 233 |
+
emb_channels,
|
| 234 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
| 235 |
+
),
|
| 236 |
+
)
|
| 237 |
+
self.out_layers = nn.Sequential(
|
| 238 |
+
normalization(self.out_channels),
|
| 239 |
+
nn.SiLU(),
|
| 240 |
+
nn.Dropout(p=dropout),
|
| 241 |
+
zero_module(
|
| 242 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
| 243 |
+
),
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
if self.out_channels == channels:
|
| 247 |
+
self.skip_connection = nn.Identity()
|
| 248 |
+
elif use_conv:
|
| 249 |
+
self.skip_connection = conv_nd(
|
| 250 |
+
dims, channels, self.out_channels, 3, padding=1
|
| 251 |
+
)
|
| 252 |
+
else:
|
| 253 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
| 254 |
+
|
| 255 |
+
def forward(self, x, emb):
|
| 256 |
+
"""
|
| 257 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
| 258 |
+
:param x: an [N x C x ...] Tensor of features.
|
| 259 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
| 260 |
+
:return: an [N x C x ...] Tensor of outputs.
|
| 261 |
+
"""
|
| 262 |
+
return checkpoint(
|
| 263 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
def _forward(self, x, emb):
|
| 267 |
+
if self.updown:
|
| 268 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
| 269 |
+
h = in_rest(x)
|
| 270 |
+
h = self.h_upd(h)
|
| 271 |
+
x = self.x_upd(x)
|
| 272 |
+
h = in_conv(h)
|
| 273 |
+
else:
|
| 274 |
+
h = self.in_layers(x)
|
| 275 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
| 276 |
+
while len(emb_out.shape) < len(h.shape):
|
| 277 |
+
emb_out = emb_out[..., None]
|
| 278 |
+
if self.use_scale_shift_norm:
|
| 279 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
| 280 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
| 281 |
+
h = out_norm(h) * (1 + scale) + shift
|
| 282 |
+
h = out_rest(h)
|
| 283 |
+
else:
|
| 284 |
+
h = h + emb_out
|
| 285 |
+
h = self.out_layers(h)
|
| 286 |
+
return self.skip_connection(x) + h
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
class AttentionBlock(nn.Module):
|
| 290 |
+
"""
|
| 291 |
+
An attention block that allows spatial positions to attend to each other.
|
| 292 |
+
Originally ported from here, but adapted to the N-d case.
|
| 293 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
| 294 |
+
"""
|
| 295 |
+
|
| 296 |
+
def __init__(
|
| 297 |
+
self,
|
| 298 |
+
channels,
|
| 299 |
+
num_heads=1,
|
| 300 |
+
num_head_channels=-1,
|
| 301 |
+
use_checkpoint=False,
|
| 302 |
+
use_new_attention_order=False,
|
| 303 |
+
):
|
| 304 |
+
super().__init__()
|
| 305 |
+
self.channels = channels
|
| 306 |
+
if num_head_channels == -1:
|
| 307 |
+
self.num_heads = num_heads
|
| 308 |
+
else:
|
| 309 |
+
assert (
|
| 310 |
+
channels % num_head_channels == 0
|
| 311 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
| 312 |
+
self.num_heads = channels // num_head_channels
|
| 313 |
+
self.use_checkpoint = use_checkpoint
|
| 314 |
+
self.norm = normalization(channels)
|
| 315 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
| 316 |
+
if use_new_attention_order:
|
| 317 |
+
# split qkv before split heads
|
| 318 |
+
self.attention = QKVAttention(self.num_heads)
|
| 319 |
+
else:
|
| 320 |
+
# split heads before split qkv
|
| 321 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
| 322 |
+
|
| 323 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
| 324 |
+
|
| 325 |
+
def forward(self, x):
|
| 326 |
+
return checkpoint(
|
| 327 |
+
self._forward, (x,), self.parameters(), True
|
| 328 |
+
) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
| 329 |
+
# return pt_checkpoint(self._forward, x) # pytorch
|
| 330 |
+
|
| 331 |
+
def _forward(self, x):
|
| 332 |
+
b, c, *spatial = x.shape
|
| 333 |
+
x = x.reshape(b, c, -1).contiguous()
|
| 334 |
+
qkv = self.qkv(self.norm(x)).contiguous()
|
| 335 |
+
h = self.attention(qkv).contiguous()
|
| 336 |
+
h = self.proj_out(h).contiguous()
|
| 337 |
+
return (x + h).reshape(b, c, *spatial).contiguous()
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
def count_flops_attn(model, _x, y):
|
| 341 |
+
"""
|
| 342 |
+
A counter for the `thop` package to count the operations in an
|
| 343 |
+
attention operation.
|
| 344 |
+
Meant to be used like:
|
| 345 |
+
macs, params = thop.profile(
|
| 346 |
+
model,
|
| 347 |
+
inputs=(inputs, timestamps),
|
| 348 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
| 349 |
+
)
|
| 350 |
+
"""
|
| 351 |
+
b, c, *spatial = y[0].shape
|
| 352 |
+
num_spatial = int(np.prod(spatial))
|
| 353 |
+
# We perform two matmuls with the same number of ops.
|
| 354 |
+
# The first computes the weight matrix, the second computes
|
| 355 |
+
# the combination of the value vectors.
|
| 356 |
+
matmul_ops = 2 * b * (num_spatial**2) * c
|
| 357 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
class QKVAttentionLegacy(nn.Module):
|
| 361 |
+
"""
|
| 362 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
| 363 |
+
"""
|
| 364 |
+
|
| 365 |
+
def __init__(self, n_heads):
|
| 366 |
+
super().__init__()
|
| 367 |
+
self.n_heads = n_heads
|
| 368 |
+
|
| 369 |
+
def forward(self, qkv):
|
| 370 |
+
"""
|
| 371 |
+
Apply QKV attention.
|
| 372 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
| 373 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
| 374 |
+
"""
|
| 375 |
+
bs, width, length = qkv.shape
|
| 376 |
+
assert width % (3 * self.n_heads) == 0
|
| 377 |
+
ch = width // (3 * self.n_heads)
|
| 378 |
+
q, k, v = (
|
| 379 |
+
qkv.reshape(bs * self.n_heads, ch * 3, length).contiguous().split(ch, dim=1)
|
| 380 |
+
)
|
| 381 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
| 382 |
+
weight = th.einsum(
|
| 383 |
+
"bct,bcs->bts", q * scale, k * scale
|
| 384 |
+
) # More stable with f16 than dividing afterwards
|
| 385 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 386 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
| 387 |
+
return a.reshape(bs, -1, length).contiguous()
|
| 388 |
+
|
| 389 |
+
@staticmethod
|
| 390 |
+
def count_flops(model, _x, y):
|
| 391 |
+
return count_flops_attn(model, _x, y)
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
class QKVAttention(nn.Module):
|
| 395 |
+
"""
|
| 396 |
+
A module which performs QKV attention and splits in a different order.
|
| 397 |
+
"""
|
| 398 |
+
|
| 399 |
+
def __init__(self, n_heads):
|
| 400 |
+
super().__init__()
|
| 401 |
+
self.n_heads = n_heads
|
| 402 |
+
|
| 403 |
+
def forward(self, qkv):
|
| 404 |
+
"""
|
| 405 |
+
Apply QKV attention.
|
| 406 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
| 407 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
| 408 |
+
"""
|
| 409 |
+
bs, width, length = qkv.shape
|
| 410 |
+
assert width % (3 * self.n_heads) == 0
|
| 411 |
+
ch = width // (3 * self.n_heads)
|
| 412 |
+
q, k, v = qkv.chunk(3, dim=1)
|
| 413 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
| 414 |
+
weight = th.einsum(
|
| 415 |
+
"bct,bcs->bts",
|
| 416 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
| 417 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
| 418 |
+
) # More stable with f16 than dividing afterwards
|
| 419 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 420 |
+
a = th.einsum(
|
| 421 |
+
"bts,bcs->bct",
|
| 422 |
+
weight,
|
| 423 |
+
v.reshape(bs * self.n_heads, ch, length).contiguous(),
|
| 424 |
+
)
|
| 425 |
+
return a.reshape(bs, -1, length).contiguous()
|
| 426 |
+
|
| 427 |
+
@staticmethod
|
| 428 |
+
def count_flops(model, _x, y):
|
| 429 |
+
return count_flops_attn(model, _x, y)
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
class UNetModel(nn.Module):
|
| 433 |
+
"""
|
| 434 |
+
The full UNet model with attention and timestep embedding.
|
| 435 |
+
:param in_channels: channels in the input Tensor.
|
| 436 |
+
:param model_channels: base channel count for the model.
|
| 437 |
+
:param out_channels: channels in the output Tensor.
|
| 438 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
| 439 |
+
:param attention_resolutions: a collection of downsample rates at which
|
| 440 |
+
attention will take place. May be a set, list, or tuple.
|
| 441 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
| 442 |
+
will be used.
|
| 443 |
+
:param dropout: the dropout probability.
|
| 444 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
| 445 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
| 446 |
+
downsampling.
|
| 447 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 448 |
+
:param num_classes: if specified (as an int), then this model will be
|
| 449 |
+
class-conditional with `num_classes` classes.
|
| 450 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
| 451 |
+
:param num_heads: the number of attention heads in each attention layer.
|
| 452 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
| 453 |
+
a fixed channel width per attention head.
|
| 454 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
| 455 |
+
of heads for upsampling. Deprecated.
|
| 456 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
| 457 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
| 458 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
| 459 |
+
increased efficiency.
|
| 460 |
+
"""
|
| 461 |
+
|
| 462 |
+
def __init__(
|
| 463 |
+
self,
|
| 464 |
+
image_size,
|
| 465 |
+
in_channels,
|
| 466 |
+
model_channels,
|
| 467 |
+
out_channels,
|
| 468 |
+
num_res_blocks,
|
| 469 |
+
attention_resolutions,
|
| 470 |
+
dropout=0,
|
| 471 |
+
channel_mult=(1, 2, 4, 8),
|
| 472 |
+
conv_resample=True,
|
| 473 |
+
dims=2,
|
| 474 |
+
num_classes=None,
|
| 475 |
+
extra_film_condition_dim=None,
|
| 476 |
+
use_checkpoint=False,
|
| 477 |
+
use_fp16=False,
|
| 478 |
+
num_heads=-1,
|
| 479 |
+
num_head_channels=-1,
|
| 480 |
+
num_heads_upsample=-1,
|
| 481 |
+
use_scale_shift_norm=False,
|
| 482 |
+
extra_film_use_concat=False, # If true, concatenate extrafilm condition with time embedding, else addition
|
| 483 |
+
resblock_updown=False,
|
| 484 |
+
use_new_attention_order=False,
|
| 485 |
+
use_spatial_transformer=False, # custom transformer support
|
| 486 |
+
transformer_depth=1, # custom transformer support
|
| 487 |
+
context_dim=None, # custom transformer support
|
| 488 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
| 489 |
+
legacy=True,
|
| 490 |
+
):
|
| 491 |
+
super().__init__()
|
| 492 |
+
if num_heads_upsample == -1:
|
| 493 |
+
num_heads_upsample = num_heads
|
| 494 |
+
|
| 495 |
+
if num_heads == -1:
|
| 496 |
+
assert (
|
| 497 |
+
num_head_channels != -1
|
| 498 |
+
), "Either num_heads or num_head_channels has to be set"
|
| 499 |
+
|
| 500 |
+
if num_head_channels == -1:
|
| 501 |
+
assert (
|
| 502 |
+
num_heads != -1
|
| 503 |
+
), "Either num_heads or num_head_channels has to be set"
|
| 504 |
+
|
| 505 |
+
self.image_size = image_size
|
| 506 |
+
self.in_channels = in_channels
|
| 507 |
+
self.model_channels = model_channels
|
| 508 |
+
self.out_channels = out_channels
|
| 509 |
+
self.num_res_blocks = num_res_blocks
|
| 510 |
+
self.attention_resolutions = attention_resolutions
|
| 511 |
+
self.dropout = dropout
|
| 512 |
+
self.channel_mult = channel_mult
|
| 513 |
+
self.conv_resample = conv_resample
|
| 514 |
+
self.num_classes = num_classes
|
| 515 |
+
self.extra_film_condition_dim = extra_film_condition_dim
|
| 516 |
+
self.use_checkpoint = use_checkpoint
|
| 517 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
| 518 |
+
self.num_heads = num_heads
|
| 519 |
+
self.num_head_channels = num_head_channels
|
| 520 |
+
self.num_heads_upsample = num_heads_upsample
|
| 521 |
+
self.predict_codebook_ids = n_embed is not None
|
| 522 |
+
self.extra_film_use_concat = extra_film_use_concat
|
| 523 |
+
time_embed_dim = model_channels * 4
|
| 524 |
+
self.time_embed = nn.Sequential(
|
| 525 |
+
linear(model_channels, time_embed_dim),
|
| 526 |
+
nn.SiLU(),
|
| 527 |
+
linear(time_embed_dim, time_embed_dim),
|
| 528 |
+
)
|
| 529 |
+
|
| 530 |
+
assert not (
|
| 531 |
+
self.num_classes is not None and self.extra_film_condition_dim is not None
|
| 532 |
+
), "As for the condition of theh UNet model, you can only set using class label or an extra embedding vector (such as from CLAP). You cannot set both num_classes and extra_film_condition_dim."
|
| 533 |
+
|
| 534 |
+
if self.num_classes is not None:
|
| 535 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
| 536 |
+
|
| 537 |
+
self.use_extra_film_by_concat = (
|
| 538 |
+
self.extra_film_condition_dim is not None and self.extra_film_use_concat
|
| 539 |
+
)
|
| 540 |
+
self.use_extra_film_by_addition = (
|
| 541 |
+
self.extra_film_condition_dim is not None and not self.extra_film_use_concat
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
if self.extra_film_condition_dim is not None:
|
| 545 |
+
self.film_emb = nn.Linear(self.extra_film_condition_dim, time_embed_dim)
|
| 546 |
+
# print("+ Use extra condition on UNet channel using Film. Extra condition dimension is %s. " % self.extra_film_condition_dim)
|
| 547 |
+
# if(self.use_extra_film_by_concat):
|
| 548 |
+
# print("\t By concatenation with time embedding")
|
| 549 |
+
# elif(self.use_extra_film_by_concat):
|
| 550 |
+
# print("\t By addition with time embedding")
|
| 551 |
+
|
| 552 |
+
if use_spatial_transformer and (
|
| 553 |
+
self.use_extra_film_by_concat or self.use_extra_film_by_addition
|
| 554 |
+
):
|
| 555 |
+
# print("+ Spatial transformer will only be used as self-attention. Because you have choose to use film as your global condition.")
|
| 556 |
+
spatial_transformer_no_context = True
|
| 557 |
+
else:
|
| 558 |
+
spatial_transformer_no_context = False
|
| 559 |
+
|
| 560 |
+
if use_spatial_transformer and not spatial_transformer_no_context:
|
| 561 |
+
assert (
|
| 562 |
+
context_dim is not None
|
| 563 |
+
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
| 564 |
+
|
| 565 |
+
if context_dim is not None and not spatial_transformer_no_context:
|
| 566 |
+
assert (
|
| 567 |
+
use_spatial_transformer
|
| 568 |
+
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
| 569 |
+
from omegaconf.listconfig import ListConfig
|
| 570 |
+
|
| 571 |
+
if type(context_dim) == ListConfig:
|
| 572 |
+
context_dim = list(context_dim)
|
| 573 |
+
|
| 574 |
+
self.input_blocks = nn.ModuleList(
|
| 575 |
+
[
|
| 576 |
+
TimestepEmbedSequential(
|
| 577 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
| 578 |
+
)
|
| 579 |
+
]
|
| 580 |
+
)
|
| 581 |
+
self._feature_size = model_channels
|
| 582 |
+
input_block_chans = [model_channels]
|
| 583 |
+
ch = model_channels
|
| 584 |
+
ds = 1
|
| 585 |
+
for level, mult in enumerate(channel_mult):
|
| 586 |
+
for _ in range(num_res_blocks):
|
| 587 |
+
layers = [
|
| 588 |
+
ResBlock(
|
| 589 |
+
ch,
|
| 590 |
+
time_embed_dim
|
| 591 |
+
if (not self.use_extra_film_by_concat)
|
| 592 |
+
else time_embed_dim * 2,
|
| 593 |
+
dropout,
|
| 594 |
+
out_channels=mult * model_channels,
|
| 595 |
+
dims=dims,
|
| 596 |
+
use_checkpoint=use_checkpoint,
|
| 597 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 598 |
+
)
|
| 599 |
+
]
|
| 600 |
+
ch = mult * model_channels
|
| 601 |
+
if ds in attention_resolutions:
|
| 602 |
+
if num_head_channels == -1:
|
| 603 |
+
dim_head = ch // num_heads
|
| 604 |
+
else:
|
| 605 |
+
num_heads = ch // num_head_channels
|
| 606 |
+
dim_head = num_head_channels
|
| 607 |
+
if legacy:
|
| 608 |
+
dim_head = (
|
| 609 |
+
ch // num_heads
|
| 610 |
+
if use_spatial_transformer
|
| 611 |
+
else num_head_channels
|
| 612 |
+
)
|
| 613 |
+
layers.append(
|
| 614 |
+
AttentionBlock(
|
| 615 |
+
ch,
|
| 616 |
+
use_checkpoint=use_checkpoint,
|
| 617 |
+
num_heads=num_heads,
|
| 618 |
+
num_head_channels=dim_head,
|
| 619 |
+
use_new_attention_order=use_new_attention_order,
|
| 620 |
+
)
|
| 621 |
+
if not use_spatial_transformer
|
| 622 |
+
else SpatialTransformer(
|
| 623 |
+
ch,
|
| 624 |
+
num_heads,
|
| 625 |
+
dim_head,
|
| 626 |
+
depth=transformer_depth,
|
| 627 |
+
context_dim=context_dim,
|
| 628 |
+
no_context=spatial_transformer_no_context,
|
| 629 |
+
)
|
| 630 |
+
)
|
| 631 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
| 632 |
+
self._feature_size += ch
|
| 633 |
+
input_block_chans.append(ch)
|
| 634 |
+
if level != len(channel_mult) - 1:
|
| 635 |
+
out_ch = ch
|
| 636 |
+
self.input_blocks.append(
|
| 637 |
+
TimestepEmbedSequential(
|
| 638 |
+
ResBlock(
|
| 639 |
+
ch,
|
| 640 |
+
time_embed_dim
|
| 641 |
+
if (not self.use_extra_film_by_concat)
|
| 642 |
+
else time_embed_dim * 2,
|
| 643 |
+
dropout,
|
| 644 |
+
out_channels=out_ch,
|
| 645 |
+
dims=dims,
|
| 646 |
+
use_checkpoint=use_checkpoint,
|
| 647 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 648 |
+
down=True,
|
| 649 |
+
)
|
| 650 |
+
if resblock_updown
|
| 651 |
+
else Downsample(
|
| 652 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
| 653 |
+
)
|
| 654 |
+
)
|
| 655 |
+
)
|
| 656 |
+
ch = out_ch
|
| 657 |
+
input_block_chans.append(ch)
|
| 658 |
+
ds *= 2
|
| 659 |
+
self._feature_size += ch
|
| 660 |
+
|
| 661 |
+
if num_head_channels == -1:
|
| 662 |
+
dim_head = ch // num_heads
|
| 663 |
+
else:
|
| 664 |
+
num_heads = ch // num_head_channels
|
| 665 |
+
dim_head = num_head_channels
|
| 666 |
+
if legacy:
|
| 667 |
+
# num_heads = 1
|
| 668 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 669 |
+
self.middle_block = TimestepEmbedSequential(
|
| 670 |
+
ResBlock(
|
| 671 |
+
ch,
|
| 672 |
+
time_embed_dim
|
| 673 |
+
if (not self.use_extra_film_by_concat)
|
| 674 |
+
else time_embed_dim * 2,
|
| 675 |
+
dropout,
|
| 676 |
+
dims=dims,
|
| 677 |
+
use_checkpoint=use_checkpoint,
|
| 678 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 679 |
+
),
|
| 680 |
+
AttentionBlock(
|
| 681 |
+
ch,
|
| 682 |
+
use_checkpoint=use_checkpoint,
|
| 683 |
+
num_heads=num_heads,
|
| 684 |
+
num_head_channels=dim_head,
|
| 685 |
+
use_new_attention_order=use_new_attention_order,
|
| 686 |
+
)
|
| 687 |
+
if not use_spatial_transformer
|
| 688 |
+
else SpatialTransformer(
|
| 689 |
+
ch,
|
| 690 |
+
num_heads,
|
| 691 |
+
dim_head,
|
| 692 |
+
depth=transformer_depth,
|
| 693 |
+
context_dim=context_dim,
|
| 694 |
+
no_context=spatial_transformer_no_context,
|
| 695 |
+
),
|
| 696 |
+
ResBlock(
|
| 697 |
+
ch,
|
| 698 |
+
time_embed_dim
|
| 699 |
+
if (not self.use_extra_film_by_concat)
|
| 700 |
+
else time_embed_dim * 2,
|
| 701 |
+
dropout,
|
| 702 |
+
dims=dims,
|
| 703 |
+
use_checkpoint=use_checkpoint,
|
| 704 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 705 |
+
),
|
| 706 |
+
)
|
| 707 |
+
self._feature_size += ch
|
| 708 |
+
|
| 709 |
+
self.output_blocks = nn.ModuleList([])
|
| 710 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
| 711 |
+
for i in range(num_res_blocks + 1):
|
| 712 |
+
ich = input_block_chans.pop()
|
| 713 |
+
layers = [
|
| 714 |
+
ResBlock(
|
| 715 |
+
ch + ich,
|
| 716 |
+
time_embed_dim
|
| 717 |
+
if (not self.use_extra_film_by_concat)
|
| 718 |
+
else time_embed_dim * 2,
|
| 719 |
+
dropout,
|
| 720 |
+
out_channels=model_channels * mult,
|
| 721 |
+
dims=dims,
|
| 722 |
+
use_checkpoint=use_checkpoint,
|
| 723 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 724 |
+
)
|
| 725 |
+
]
|
| 726 |
+
ch = model_channels * mult
|
| 727 |
+
if ds in attention_resolutions:
|
| 728 |
+
if num_head_channels == -1:
|
| 729 |
+
dim_head = ch // num_heads
|
| 730 |
+
else:
|
| 731 |
+
num_heads = ch // num_head_channels
|
| 732 |
+
dim_head = num_head_channels
|
| 733 |
+
if legacy:
|
| 734 |
+
# num_heads = 1
|
| 735 |
+
dim_head = (
|
| 736 |
+
ch // num_heads
|
| 737 |
+
if use_spatial_transformer
|
| 738 |
+
else num_head_channels
|
| 739 |
+
)
|
| 740 |
+
layers.append(
|
| 741 |
+
AttentionBlock(
|
| 742 |
+
ch,
|
| 743 |
+
use_checkpoint=use_checkpoint,
|
| 744 |
+
num_heads=num_heads_upsample,
|
| 745 |
+
num_head_channels=dim_head,
|
| 746 |
+
use_new_attention_order=use_new_attention_order,
|
| 747 |
+
)
|
| 748 |
+
if not use_spatial_transformer
|
| 749 |
+
else SpatialTransformer(
|
| 750 |
+
ch,
|
| 751 |
+
num_heads,
|
| 752 |
+
dim_head,
|
| 753 |
+
depth=transformer_depth,
|
| 754 |
+
context_dim=context_dim,
|
| 755 |
+
no_context=spatial_transformer_no_context,
|
| 756 |
+
)
|
| 757 |
+
)
|
| 758 |
+
if level and i == num_res_blocks:
|
| 759 |
+
out_ch = ch
|
| 760 |
+
layers.append(
|
| 761 |
+
ResBlock(
|
| 762 |
+
ch,
|
| 763 |
+
time_embed_dim
|
| 764 |
+
if (not self.use_extra_film_by_concat)
|
| 765 |
+
else time_embed_dim * 2,
|
| 766 |
+
dropout,
|
| 767 |
+
out_channels=out_ch,
|
| 768 |
+
dims=dims,
|
| 769 |
+
use_checkpoint=use_checkpoint,
|
| 770 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 771 |
+
up=True,
|
| 772 |
+
)
|
| 773 |
+
if resblock_updown
|
| 774 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
| 775 |
+
)
|
| 776 |
+
ds //= 2
|
| 777 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
| 778 |
+
self._feature_size += ch
|
| 779 |
+
|
| 780 |
+
self.out = nn.Sequential(
|
| 781 |
+
normalization(ch),
|
| 782 |
+
nn.SiLU(),
|
| 783 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
| 784 |
+
)
|
| 785 |
+
if self.predict_codebook_ids:
|
| 786 |
+
self.id_predictor = nn.Sequential(
|
| 787 |
+
normalization(ch),
|
| 788 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
| 789 |
+
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
| 790 |
+
)
|
| 791 |
+
|
| 792 |
+
self.shape_reported = False
|
| 793 |
+
|
| 794 |
+
def convert_to_fp16(self):
|
| 795 |
+
"""
|
| 796 |
+
Convert the torso of the model to float16.
|
| 797 |
+
"""
|
| 798 |
+
self.input_blocks.apply(convert_module_to_f16)
|
| 799 |
+
self.middle_block.apply(convert_module_to_f16)
|
| 800 |
+
self.output_blocks.apply(convert_module_to_f16)
|
| 801 |
+
|
| 802 |
+
def convert_to_fp32(self):
|
| 803 |
+
"""
|
| 804 |
+
Convert the torso of the model to float32.
|
| 805 |
+
"""
|
| 806 |
+
self.input_blocks.apply(convert_module_to_f32)
|
| 807 |
+
self.middle_block.apply(convert_module_to_f32)
|
| 808 |
+
self.output_blocks.apply(convert_module_to_f32)
|
| 809 |
+
|
| 810 |
+
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
|
| 811 |
+
"""
|
| 812 |
+
Apply the model to an input batch.
|
| 813 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
| 814 |
+
:param timesteps: a 1-D batch of timesteps.
|
| 815 |
+
:param context: conditioning plugged in via crossattn
|
| 816 |
+
:param y: an [N] Tensor of labels, if class-conditional. an [N, extra_film_condition_dim] Tensor if film-embed conditional
|
| 817 |
+
:return: an [N x C x ...] Tensor of outputs.
|
| 818 |
+
"""
|
| 819 |
+
if not self.shape_reported:
|
| 820 |
+
# print("The shape of UNet input is", x.size())
|
| 821 |
+
self.shape_reported = True
|
| 822 |
+
|
| 823 |
+
assert (y is not None) == (
|
| 824 |
+
self.num_classes is not None or self.extra_film_condition_dim is not None
|
| 825 |
+
), "must specify y if and only if the model is class-conditional or film embedding conditional"
|
| 826 |
+
hs = []
|
| 827 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
| 828 |
+
emb = self.time_embed(t_emb)
|
| 829 |
+
|
| 830 |
+
if self.num_classes is not None:
|
| 831 |
+
assert y.shape == (x.shape[0],)
|
| 832 |
+
emb = emb + self.label_emb(y)
|
| 833 |
+
|
| 834 |
+
if self.use_extra_film_by_addition:
|
| 835 |
+
emb = emb + self.film_emb(y)
|
| 836 |
+
elif self.use_extra_film_by_concat:
|
| 837 |
+
emb = th.cat([emb, self.film_emb(y)], dim=-1)
|
| 838 |
+
|
| 839 |
+
h = x.type(self.dtype)
|
| 840 |
+
for module in self.input_blocks:
|
| 841 |
+
h = module(h, emb, context)
|
| 842 |
+
hs.append(h)
|
| 843 |
+
h = self.middle_block(h, emb, context)
|
| 844 |
+
for module in self.output_blocks:
|
| 845 |
+
h = th.cat([h, hs.pop()], dim=1)
|
| 846 |
+
h = module(h, emb, context)
|
| 847 |
+
h = h.type(x.dtype)
|
| 848 |
+
if self.predict_codebook_ids:
|
| 849 |
+
return self.id_predictor(h)
|
| 850 |
+
else:
|
| 851 |
+
return self.out(h)
|
| 852 |
+
|
| 853 |
+
|
| 854 |
+
class EncoderUNetModel(nn.Module):
|
| 855 |
+
"""
|
| 856 |
+
The half UNet model with attention and timestep embedding.
|
| 857 |
+
For usage, see UNet.
|
| 858 |
+
"""
|
| 859 |
+
|
| 860 |
+
def __init__(
|
| 861 |
+
self,
|
| 862 |
+
image_size,
|
| 863 |
+
in_channels,
|
| 864 |
+
model_channels,
|
| 865 |
+
out_channels,
|
| 866 |
+
num_res_blocks,
|
| 867 |
+
attention_resolutions,
|
| 868 |
+
dropout=0,
|
| 869 |
+
channel_mult=(1, 2, 4, 8),
|
| 870 |
+
conv_resample=True,
|
| 871 |
+
dims=2,
|
| 872 |
+
use_checkpoint=False,
|
| 873 |
+
use_fp16=False,
|
| 874 |
+
num_heads=1,
|
| 875 |
+
num_head_channels=-1,
|
| 876 |
+
num_heads_upsample=-1,
|
| 877 |
+
use_scale_shift_norm=False,
|
| 878 |
+
resblock_updown=False,
|
| 879 |
+
use_new_attention_order=False,
|
| 880 |
+
pool="adaptive",
|
| 881 |
+
*args,
|
| 882 |
+
**kwargs,
|
| 883 |
+
):
|
| 884 |
+
super().__init__()
|
| 885 |
+
|
| 886 |
+
if num_heads_upsample == -1:
|
| 887 |
+
num_heads_upsample = num_heads
|
| 888 |
+
|
| 889 |
+
self.in_channels = in_channels
|
| 890 |
+
self.model_channels = model_channels
|
| 891 |
+
self.out_channels = out_channels
|
| 892 |
+
self.num_res_blocks = num_res_blocks
|
| 893 |
+
self.attention_resolutions = attention_resolutions
|
| 894 |
+
self.dropout = dropout
|
| 895 |
+
self.channel_mult = channel_mult
|
| 896 |
+
self.conv_resample = conv_resample
|
| 897 |
+
self.use_checkpoint = use_checkpoint
|
| 898 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
| 899 |
+
self.num_heads = num_heads
|
| 900 |
+
self.num_head_channels = num_head_channels
|
| 901 |
+
self.num_heads_upsample = num_heads_upsample
|
| 902 |
+
|
| 903 |
+
time_embed_dim = model_channels * 4
|
| 904 |
+
self.time_embed = nn.Sequential(
|
| 905 |
+
linear(model_channels, time_embed_dim),
|
| 906 |
+
nn.SiLU(),
|
| 907 |
+
linear(time_embed_dim, time_embed_dim),
|
| 908 |
+
)
|
| 909 |
+
|
| 910 |
+
self.input_blocks = nn.ModuleList(
|
| 911 |
+
[
|
| 912 |
+
TimestepEmbedSequential(
|
| 913 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
| 914 |
+
)
|
| 915 |
+
]
|
| 916 |
+
)
|
| 917 |
+
self._feature_size = model_channels
|
| 918 |
+
input_block_chans = [model_channels]
|
| 919 |
+
ch = model_channels
|
| 920 |
+
ds = 1
|
| 921 |
+
for level, mult in enumerate(channel_mult):
|
| 922 |
+
for _ in range(num_res_blocks):
|
| 923 |
+
layers = [
|
| 924 |
+
ResBlock(
|
| 925 |
+
ch,
|
| 926 |
+
time_embed_dim,
|
| 927 |
+
dropout,
|
| 928 |
+
out_channels=mult * model_channels,
|
| 929 |
+
dims=dims,
|
| 930 |
+
use_checkpoint=use_checkpoint,
|
| 931 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 932 |
+
)
|
| 933 |
+
]
|
| 934 |
+
ch = mult * model_channels
|
| 935 |
+
if ds in attention_resolutions:
|
| 936 |
+
layers.append(
|
| 937 |
+
AttentionBlock(
|
| 938 |
+
ch,
|
| 939 |
+
use_checkpoint=use_checkpoint,
|
| 940 |
+
num_heads=num_heads,
|
| 941 |
+
num_head_channels=num_head_channels,
|
| 942 |
+
use_new_attention_order=use_new_attention_order,
|
| 943 |
+
)
|
| 944 |
+
)
|
| 945 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
| 946 |
+
self._feature_size += ch
|
| 947 |
+
input_block_chans.append(ch)
|
| 948 |
+
if level != len(channel_mult) - 1:
|
| 949 |
+
out_ch = ch
|
| 950 |
+
self.input_blocks.append(
|
| 951 |
+
TimestepEmbedSequential(
|
| 952 |
+
ResBlock(
|
| 953 |
+
ch,
|
| 954 |
+
time_embed_dim,
|
| 955 |
+
dropout,
|
| 956 |
+
out_channels=out_ch,
|
| 957 |
+
dims=dims,
|
| 958 |
+
use_checkpoint=use_checkpoint,
|
| 959 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 960 |
+
down=True,
|
| 961 |
+
)
|
| 962 |
+
if resblock_updown
|
| 963 |
+
else Downsample(
|
| 964 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
| 965 |
+
)
|
| 966 |
+
)
|
| 967 |
+
)
|
| 968 |
+
ch = out_ch
|
| 969 |
+
input_block_chans.append(ch)
|
| 970 |
+
ds *= 2
|
| 971 |
+
self._feature_size += ch
|
| 972 |
+
|
| 973 |
+
self.middle_block = TimestepEmbedSequential(
|
| 974 |
+
ResBlock(
|
| 975 |
+
ch,
|
| 976 |
+
time_embed_dim,
|
| 977 |
+
dropout,
|
| 978 |
+
dims=dims,
|
| 979 |
+
use_checkpoint=use_checkpoint,
|
| 980 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 981 |
+
),
|
| 982 |
+
AttentionBlock(
|
| 983 |
+
ch,
|
| 984 |
+
use_checkpoint=use_checkpoint,
|
| 985 |
+
num_heads=num_heads,
|
| 986 |
+
num_head_channels=num_head_channels,
|
| 987 |
+
use_new_attention_order=use_new_attention_order,
|
| 988 |
+
),
|
| 989 |
+
ResBlock(
|
| 990 |
+
ch,
|
| 991 |
+
time_embed_dim,
|
| 992 |
+
dropout,
|
| 993 |
+
dims=dims,
|
| 994 |
+
use_checkpoint=use_checkpoint,
|
| 995 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 996 |
+
),
|
| 997 |
+
)
|
| 998 |
+
self._feature_size += ch
|
| 999 |
+
self.pool = pool
|
| 1000 |
+
if pool == "adaptive":
|
| 1001 |
+
self.out = nn.Sequential(
|
| 1002 |
+
normalization(ch),
|
| 1003 |
+
nn.SiLU(),
|
| 1004 |
+
nn.AdaptiveAvgPool2d((1, 1)),
|
| 1005 |
+
zero_module(conv_nd(dims, ch, out_channels, 1)),
|
| 1006 |
+
nn.Flatten(),
|
| 1007 |
+
)
|
| 1008 |
+
elif pool == "attention":
|
| 1009 |
+
assert num_head_channels != -1
|
| 1010 |
+
self.out = nn.Sequential(
|
| 1011 |
+
normalization(ch),
|
| 1012 |
+
nn.SiLU(),
|
| 1013 |
+
AttentionPool2d(
|
| 1014 |
+
(image_size // ds), ch, num_head_channels, out_channels
|
| 1015 |
+
),
|
| 1016 |
+
)
|
| 1017 |
+
elif pool == "spatial":
|
| 1018 |
+
self.out = nn.Sequential(
|
| 1019 |
+
nn.Linear(self._feature_size, 2048),
|
| 1020 |
+
nn.ReLU(),
|
| 1021 |
+
nn.Linear(2048, self.out_channels),
|
| 1022 |
+
)
|
| 1023 |
+
elif pool == "spatial_v2":
|
| 1024 |
+
self.out = nn.Sequential(
|
| 1025 |
+
nn.Linear(self._feature_size, 2048),
|
| 1026 |
+
normalization(2048),
|
| 1027 |
+
nn.SiLU(),
|
| 1028 |
+
nn.Linear(2048, self.out_channels),
|
| 1029 |
+
)
|
| 1030 |
+
else:
|
| 1031 |
+
raise NotImplementedError(f"Unexpected {pool} pooling")
|
| 1032 |
+
|
| 1033 |
+
def convert_to_fp16(self):
|
| 1034 |
+
"""
|
| 1035 |
+
Convert the torso of the model to float16.
|
| 1036 |
+
"""
|
| 1037 |
+
self.input_blocks.apply(convert_module_to_f16)
|
| 1038 |
+
self.middle_block.apply(convert_module_to_f16)
|
| 1039 |
+
|
| 1040 |
+
def convert_to_fp32(self):
|
| 1041 |
+
"""
|
| 1042 |
+
Convert the torso of the model to float32.
|
| 1043 |
+
"""
|
| 1044 |
+
self.input_blocks.apply(convert_module_to_f32)
|
| 1045 |
+
self.middle_block.apply(convert_module_to_f32)
|
| 1046 |
+
|
| 1047 |
+
def forward(self, x, timesteps):
|
| 1048 |
+
"""
|
| 1049 |
+
Apply the model to an input batch.
|
| 1050 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
| 1051 |
+
:param timesteps: a 1-D batch of timesteps.
|
| 1052 |
+
:return: an [N x K] Tensor of outputs.
|
| 1053 |
+
"""
|
| 1054 |
+
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
| 1055 |
+
|
| 1056 |
+
results = []
|
| 1057 |
+
h = x.type(self.dtype)
|
| 1058 |
+
for module in self.input_blocks:
|
| 1059 |
+
h = module(h, emb)
|
| 1060 |
+
if self.pool.startswith("spatial"):
|
| 1061 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
| 1062 |
+
h = self.middle_block(h, emb)
|
| 1063 |
+
if self.pool.startswith("spatial"):
|
| 1064 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
| 1065 |
+
h = th.cat(results, axis=-1)
|
| 1066 |
+
return self.out(h)
|
| 1067 |
+
else:
|
| 1068 |
+
h = h.type(x.dtype)
|
| 1069 |
+
return self.out(h)
|
audioldm/latent_diffusion/util.py
ADDED
|
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# adopted from
|
| 2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
| 3 |
+
# and
|
| 4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
| 5 |
+
# and
|
| 6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
| 7 |
+
#
|
| 8 |
+
# thanks!
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
import os
|
| 12 |
+
import math
|
| 13 |
+
import torch
|
| 14 |
+
import torch.nn as nn
|
| 15 |
+
import numpy as np
|
| 16 |
+
from einops import repeat
|
| 17 |
+
|
| 18 |
+
from audioldm.utils import instantiate_from_config
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def make_beta_schedule(
|
| 22 |
+
schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3
|
| 23 |
+
):
|
| 24 |
+
if schedule == "linear":
|
| 25 |
+
betas = (
|
| 26 |
+
torch.linspace(
|
| 27 |
+
linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64
|
| 28 |
+
)
|
| 29 |
+
** 2
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
elif schedule == "cosine":
|
| 33 |
+
timesteps = (
|
| 34 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
| 35 |
+
)
|
| 36 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
| 37 |
+
alphas = torch.cos(alphas).pow(2)
|
| 38 |
+
alphas = alphas / alphas[0]
|
| 39 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
| 40 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
| 41 |
+
|
| 42 |
+
elif schedule == "sqrt_linear":
|
| 43 |
+
betas = torch.linspace(
|
| 44 |
+
linear_start, linear_end, n_timestep, dtype=torch.float64
|
| 45 |
+
)
|
| 46 |
+
elif schedule == "sqrt":
|
| 47 |
+
betas = (
|
| 48 |
+
torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
| 49 |
+
** 0.5
|
| 50 |
+
)
|
| 51 |
+
else:
|
| 52 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
| 53 |
+
return betas.numpy()
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def make_ddim_timesteps(
|
| 57 |
+
ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True
|
| 58 |
+
):
|
| 59 |
+
if ddim_discr_method == "uniform":
|
| 60 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
| 61 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
| 62 |
+
elif ddim_discr_method == "quad":
|
| 63 |
+
ddim_timesteps = (
|
| 64 |
+
(np.linspace(0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps)) ** 2
|
| 65 |
+
).astype(int)
|
| 66 |
+
else:
|
| 67 |
+
raise NotImplementedError(
|
| 68 |
+
f'There is no ddim discretization method called "{ddim_discr_method}"'
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
| 72 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
| 73 |
+
steps_out = ddim_timesteps + 1
|
| 74 |
+
if verbose:
|
| 75 |
+
print(f"Selected timesteps for ddim sampler: {steps_out}")
|
| 76 |
+
return steps_out
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
| 80 |
+
# select alphas for computing the variance schedule
|
| 81 |
+
alphas = alphacums[ddim_timesteps]
|
| 82 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
| 83 |
+
|
| 84 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
| 85 |
+
sigmas = eta * np.sqrt(
|
| 86 |
+
(1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)
|
| 87 |
+
)
|
| 88 |
+
if verbose:
|
| 89 |
+
print(
|
| 90 |
+
f"Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}"
|
| 91 |
+
)
|
| 92 |
+
print(
|
| 93 |
+
f"For the chosen value of eta, which is {eta}, "
|
| 94 |
+
f"this results in the following sigma_t schedule for ddim sampler {sigmas}"
|
| 95 |
+
)
|
| 96 |
+
return sigmas, alphas, alphas_prev
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
| 100 |
+
"""
|
| 101 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
| 102 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
| 103 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
| 104 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
| 105 |
+
produces the cumulative product of (1-beta) up to that
|
| 106 |
+
part of the diffusion process.
|
| 107 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
| 108 |
+
prevent singularities.
|
| 109 |
+
"""
|
| 110 |
+
betas = []
|
| 111 |
+
for i in range(num_diffusion_timesteps):
|
| 112 |
+
t1 = i / num_diffusion_timesteps
|
| 113 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
| 114 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
| 115 |
+
return np.array(betas)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def extract_into_tensor(a, t, x_shape):
|
| 119 |
+
b, *_ = t.shape
|
| 120 |
+
out = a.gather(-1, t).contiguous()
|
| 121 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1))).contiguous()
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def checkpoint(func, inputs, params, flag):
|
| 125 |
+
"""
|
| 126 |
+
Evaluate a function without caching intermediate activations, allowing for
|
| 127 |
+
reduced memory at the expense of extra compute in the backward pass.
|
| 128 |
+
:param func: the function to evaluate.
|
| 129 |
+
:param inputs: the argument sequence to pass to `func`.
|
| 130 |
+
:param params: a sequence of parameters `func` depends on but does not
|
| 131 |
+
explicitly take as arguments.
|
| 132 |
+
:param flag: if False, disable gradient checkpointing.
|
| 133 |
+
"""
|
| 134 |
+
if flag:
|
| 135 |
+
args = tuple(inputs) + tuple(params)
|
| 136 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
| 137 |
+
else:
|
| 138 |
+
return func(*inputs)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
class CheckpointFunction(torch.autograd.Function):
|
| 142 |
+
@staticmethod
|
| 143 |
+
def forward(ctx, run_function, length, *args):
|
| 144 |
+
ctx.run_function = run_function
|
| 145 |
+
ctx.input_tensors = list(args[:length])
|
| 146 |
+
ctx.input_params = list(args[length:])
|
| 147 |
+
|
| 148 |
+
with torch.no_grad():
|
| 149 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
| 150 |
+
return output_tensors
|
| 151 |
+
|
| 152 |
+
@staticmethod
|
| 153 |
+
def backward(ctx, *output_grads):
|
| 154 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
| 155 |
+
with torch.enable_grad():
|
| 156 |
+
# Fixes a bug where the first op in run_function modifies the
|
| 157 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
| 158 |
+
# Tensors.
|
| 159 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
| 160 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
| 161 |
+
input_grads = torch.autograd.grad(
|
| 162 |
+
output_tensors,
|
| 163 |
+
ctx.input_tensors + ctx.input_params,
|
| 164 |
+
output_grads,
|
| 165 |
+
allow_unused=True,
|
| 166 |
+
)
|
| 167 |
+
del ctx.input_tensors
|
| 168 |
+
del ctx.input_params
|
| 169 |
+
del output_tensors
|
| 170 |
+
return (None, None) + input_grads
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
| 174 |
+
"""
|
| 175 |
+
Create sinusoidal timestep embeddings.
|
| 176 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
| 177 |
+
These may be fractional.
|
| 178 |
+
:param dim: the dimension of the output.
|
| 179 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
| 180 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
| 181 |
+
"""
|
| 182 |
+
if not repeat_only:
|
| 183 |
+
half = dim // 2
|
| 184 |
+
freqs = torch.exp(
|
| 185 |
+
-math.log(max_period)
|
| 186 |
+
* torch.arange(start=0, end=half, dtype=torch.float32)
|
| 187 |
+
/ half
|
| 188 |
+
).to(device=timesteps.device)
|
| 189 |
+
args = timesteps[:, None].float() * freqs[None]
|
| 190 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 191 |
+
if dim % 2:
|
| 192 |
+
embedding = torch.cat(
|
| 193 |
+
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
| 194 |
+
)
|
| 195 |
+
else:
|
| 196 |
+
embedding = repeat(timesteps, "b -> b d", d=dim)
|
| 197 |
+
return embedding
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def zero_module(module):
|
| 201 |
+
"""
|
| 202 |
+
Zero out the parameters of a module and return it.
|
| 203 |
+
"""
|
| 204 |
+
for p in module.parameters():
|
| 205 |
+
p.detach().zero_()
|
| 206 |
+
return module
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def scale_module(module, scale):
|
| 210 |
+
"""
|
| 211 |
+
Scale the parameters of a module and return it.
|
| 212 |
+
"""
|
| 213 |
+
for p in module.parameters():
|
| 214 |
+
p.detach().mul_(scale)
|
| 215 |
+
return module
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def mean_flat(tensor):
|
| 219 |
+
"""
|
| 220 |
+
Take the mean over all non-batch dimensions.
|
| 221 |
+
"""
|
| 222 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def normalization(channels):
|
| 226 |
+
"""
|
| 227 |
+
Make a standard normalization layer.
|
| 228 |
+
:param channels: number of input channels.
|
| 229 |
+
:return: an nn.Module for normalization.
|
| 230 |
+
"""
|
| 231 |
+
return GroupNorm32(32, channels)
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
| 235 |
+
class SiLU(nn.Module):
|
| 236 |
+
def forward(self, x):
|
| 237 |
+
return x * torch.sigmoid(x)
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
class GroupNorm32(nn.GroupNorm):
|
| 241 |
+
def forward(self, x):
|
| 242 |
+
return super().forward(x.float()).type(x.dtype)
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
def conv_nd(dims, *args, **kwargs):
|
| 246 |
+
"""
|
| 247 |
+
Create a 1D, 2D, or 3D convolution module.
|
| 248 |
+
"""
|
| 249 |
+
if dims == 1:
|
| 250 |
+
return nn.Conv1d(*args, **kwargs)
|
| 251 |
+
elif dims == 2:
|
| 252 |
+
return nn.Conv2d(*args, **kwargs)
|
| 253 |
+
elif dims == 3:
|
| 254 |
+
return nn.Conv3d(*args, **kwargs)
|
| 255 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def linear(*args, **kwargs):
|
| 259 |
+
"""
|
| 260 |
+
Create a linear module.
|
| 261 |
+
"""
|
| 262 |
+
return nn.Linear(*args, **kwargs)
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
| 266 |
+
"""
|
| 267 |
+
Create a 1D, 2D, or 3D average pooling module.
|
| 268 |
+
"""
|
| 269 |
+
if dims == 1:
|
| 270 |
+
return nn.AvgPool1d(*args, **kwargs)
|
| 271 |
+
elif dims == 2:
|
| 272 |
+
return nn.AvgPool2d(*args, **kwargs)
|
| 273 |
+
elif dims == 3:
|
| 274 |
+
return nn.AvgPool3d(*args, **kwargs)
|
| 275 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
class HybridConditioner(nn.Module):
|
| 279 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
| 280 |
+
super().__init__()
|
| 281 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
| 282 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
| 283 |
+
|
| 284 |
+
def forward(self, c_concat, c_crossattn):
|
| 285 |
+
c_concat = self.concat_conditioner(c_concat)
|
| 286 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
| 287 |
+
return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]}
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
def noise_like(shape, device, repeat=False):
|
| 291 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
|
| 292 |
+
shape[0], *((1,) * (len(shape) - 1))
|
| 293 |
+
)
|
| 294 |
+
noise = lambda: torch.randn(shape, device=device)
|
| 295 |
+
return repeat_noise() if repeat else noise()
|
audioldm/ldm.py
ADDED
|
@@ -0,0 +1,818 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
from audioldm.utils import default, instantiate_from_config, save_wave
|
| 7 |
+
from audioldm.latent_diffusion.ddpm import DDPM
|
| 8 |
+
from audioldm.variational_autoencoder.distributions import DiagonalGaussianDistribution
|
| 9 |
+
from audioldm.latent_diffusion.util import noise_like
|
| 10 |
+
from audioldm.latent_diffusion.ddim import DDIMSampler
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def disabled_train(self, mode=True):
|
| 15 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
| 16 |
+
does not change anymore."""
|
| 17 |
+
return self
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class LatentDiffusion(DDPM):
|
| 21 |
+
"""main class"""
|
| 22 |
+
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
device="cuda",
|
| 26 |
+
first_stage_config=None,
|
| 27 |
+
cond_stage_config=None,
|
| 28 |
+
num_timesteps_cond=None,
|
| 29 |
+
cond_stage_key="image",
|
| 30 |
+
cond_stage_trainable=False,
|
| 31 |
+
concat_mode=True,
|
| 32 |
+
cond_stage_forward=None,
|
| 33 |
+
conditioning_key=None,
|
| 34 |
+
scale_factor=1.0,
|
| 35 |
+
scale_by_std=False,
|
| 36 |
+
base_learning_rate=None,
|
| 37 |
+
*args,
|
| 38 |
+
**kwargs,
|
| 39 |
+
):
|
| 40 |
+
self.device = device
|
| 41 |
+
self.learning_rate = base_learning_rate
|
| 42 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
| 43 |
+
self.scale_by_std = scale_by_std
|
| 44 |
+
assert self.num_timesteps_cond <= kwargs["timesteps"]
|
| 45 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
| 46 |
+
if conditioning_key is None:
|
| 47 |
+
conditioning_key = "concat" if concat_mode else "crossattn"
|
| 48 |
+
if cond_stage_config == "__is_unconditional__":
|
| 49 |
+
conditioning_key = None
|
| 50 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
| 51 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
| 52 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
| 53 |
+
self.concat_mode = concat_mode
|
| 54 |
+
self.cond_stage_trainable = cond_stage_trainable
|
| 55 |
+
self.cond_stage_key = cond_stage_key
|
| 56 |
+
self.cond_stage_key_orig = cond_stage_key
|
| 57 |
+
try:
|
| 58 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
| 59 |
+
except:
|
| 60 |
+
self.num_downs = 0
|
| 61 |
+
if not scale_by_std:
|
| 62 |
+
self.scale_factor = scale_factor
|
| 63 |
+
else:
|
| 64 |
+
self.register_buffer("scale_factor", torch.tensor(scale_factor))
|
| 65 |
+
self.instantiate_first_stage(first_stage_config)
|
| 66 |
+
self.instantiate_cond_stage(cond_stage_config)
|
| 67 |
+
self.cond_stage_forward = cond_stage_forward
|
| 68 |
+
self.clip_denoised = False
|
| 69 |
+
|
| 70 |
+
def make_cond_schedule(
|
| 71 |
+
self,
|
| 72 |
+
):
|
| 73 |
+
self.cond_ids = torch.full(
|
| 74 |
+
size=(self.num_timesteps,),
|
| 75 |
+
fill_value=self.num_timesteps - 1,
|
| 76 |
+
dtype=torch.long,
|
| 77 |
+
)
|
| 78 |
+
ids = torch.round(
|
| 79 |
+
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
|
| 80 |
+
).long()
|
| 81 |
+
self.cond_ids[: self.num_timesteps_cond] = ids
|
| 82 |
+
|
| 83 |
+
def register_schedule(
|
| 84 |
+
self,
|
| 85 |
+
given_betas=None,
|
| 86 |
+
beta_schedule="linear",
|
| 87 |
+
timesteps=1000,
|
| 88 |
+
linear_start=1e-4,
|
| 89 |
+
linear_end=2e-2,
|
| 90 |
+
cosine_s=8e-3,
|
| 91 |
+
):
|
| 92 |
+
super().register_schedule(
|
| 93 |
+
given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
| 97 |
+
if self.shorten_cond_schedule:
|
| 98 |
+
self.make_cond_schedule()
|
| 99 |
+
|
| 100 |
+
def instantiate_first_stage(self, config):
|
| 101 |
+
model = instantiate_from_config(config)
|
| 102 |
+
self.first_stage_model = model.eval()
|
| 103 |
+
self.first_stage_model.train = disabled_train
|
| 104 |
+
for param in self.first_stage_model.parameters():
|
| 105 |
+
param.requires_grad = False
|
| 106 |
+
|
| 107 |
+
def instantiate_cond_stage(self, config):
|
| 108 |
+
if not self.cond_stage_trainable:
|
| 109 |
+
if config == "__is_first_stage__":
|
| 110 |
+
print("Using first stage also as cond stage.")
|
| 111 |
+
self.cond_stage_model = self.first_stage_model
|
| 112 |
+
elif config == "__is_unconditional__":
|
| 113 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
| 114 |
+
self.cond_stage_model = None
|
| 115 |
+
# self.be_unconditional = True
|
| 116 |
+
else:
|
| 117 |
+
model = instantiate_from_config(config)
|
| 118 |
+
self.cond_stage_model = model.eval()
|
| 119 |
+
self.cond_stage_model.train = disabled_train
|
| 120 |
+
for param in self.cond_stage_model.parameters():
|
| 121 |
+
param.requires_grad = False
|
| 122 |
+
else:
|
| 123 |
+
assert config != "__is_first_stage__"
|
| 124 |
+
assert config != "__is_unconditional__"
|
| 125 |
+
model = instantiate_from_config(config)
|
| 126 |
+
self.cond_stage_model = model
|
| 127 |
+
self.cond_stage_model = self.cond_stage_model.to(self.device)
|
| 128 |
+
|
| 129 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
| 130 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
| 131 |
+
z = encoder_posterior.sample()
|
| 132 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
| 133 |
+
z = encoder_posterior
|
| 134 |
+
else:
|
| 135 |
+
raise NotImplementedError(
|
| 136 |
+
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
|
| 137 |
+
)
|
| 138 |
+
return self.scale_factor * z
|
| 139 |
+
|
| 140 |
+
def get_learned_conditioning(self, c):
|
| 141 |
+
if self.cond_stage_forward is None:
|
| 142 |
+
if hasattr(self.cond_stage_model, "encode") and callable(
|
| 143 |
+
self.cond_stage_model.encode
|
| 144 |
+
):
|
| 145 |
+
c = self.cond_stage_model.encode(c)
|
| 146 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
| 147 |
+
c = c.mode()
|
| 148 |
+
else:
|
| 149 |
+
# Text input is list
|
| 150 |
+
if type(c) == list and len(c) == 1:
|
| 151 |
+
c = self.cond_stage_model([c[0], c[0]])
|
| 152 |
+
c = c[0:1]
|
| 153 |
+
else:
|
| 154 |
+
c = self.cond_stage_model(c)
|
| 155 |
+
else:
|
| 156 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
| 157 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
| 158 |
+
return c
|
| 159 |
+
|
| 160 |
+
@torch.no_grad()
|
| 161 |
+
def get_input(
|
| 162 |
+
self,
|
| 163 |
+
batch,
|
| 164 |
+
k,
|
| 165 |
+
return_first_stage_encode=True,
|
| 166 |
+
return_first_stage_outputs=False,
|
| 167 |
+
force_c_encode=False,
|
| 168 |
+
cond_key=None,
|
| 169 |
+
return_original_cond=False,
|
| 170 |
+
bs=None,
|
| 171 |
+
):
|
| 172 |
+
x = super().get_input(batch, k)
|
| 173 |
+
|
| 174 |
+
if bs is not None:
|
| 175 |
+
x = x[:bs]
|
| 176 |
+
|
| 177 |
+
x = x.to(self.device)
|
| 178 |
+
|
| 179 |
+
if return_first_stage_encode:
|
| 180 |
+
encoder_posterior = self.encode_first_stage(x)
|
| 181 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
| 182 |
+
else:
|
| 183 |
+
z = None
|
| 184 |
+
|
| 185 |
+
if self.model.conditioning_key is not None:
|
| 186 |
+
if cond_key is None:
|
| 187 |
+
cond_key = self.cond_stage_key
|
| 188 |
+
if cond_key != self.first_stage_key:
|
| 189 |
+
if cond_key in ["caption", "coordinates_bbox"]:
|
| 190 |
+
xc = batch[cond_key]
|
| 191 |
+
elif cond_key == "class_label":
|
| 192 |
+
xc = batch
|
| 193 |
+
else:
|
| 194 |
+
# [bs, 1, 527]
|
| 195 |
+
xc = super().get_input(batch, cond_key)
|
| 196 |
+
if type(xc) == torch.Tensor:
|
| 197 |
+
xc = xc.to(self.device)
|
| 198 |
+
else:
|
| 199 |
+
xc = x
|
| 200 |
+
if not self.cond_stage_trainable or force_c_encode:
|
| 201 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
| 202 |
+
c = self.get_learned_conditioning(xc)
|
| 203 |
+
else:
|
| 204 |
+
c = self.get_learned_conditioning(xc.to(self.device))
|
| 205 |
+
else:
|
| 206 |
+
c = xc
|
| 207 |
+
|
| 208 |
+
if bs is not None:
|
| 209 |
+
c = c[:bs]
|
| 210 |
+
|
| 211 |
+
else:
|
| 212 |
+
c = None
|
| 213 |
+
xc = None
|
| 214 |
+
if self.use_positional_encodings:
|
| 215 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
| 216 |
+
c = {"pos_x": pos_x, "pos_y": pos_y}
|
| 217 |
+
out = [z, c]
|
| 218 |
+
if return_first_stage_outputs:
|
| 219 |
+
xrec = self.decode_first_stage(z)
|
| 220 |
+
out.extend([x, xrec])
|
| 221 |
+
if return_original_cond:
|
| 222 |
+
out.append(xc)
|
| 223 |
+
return out
|
| 224 |
+
|
| 225 |
+
@torch.no_grad()
|
| 226 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
| 227 |
+
if predict_cids:
|
| 228 |
+
if z.dim() == 4:
|
| 229 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
| 230 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
| 231 |
+
z = rearrange(z, "b h w c -> b c h w").contiguous()
|
| 232 |
+
|
| 233 |
+
z = 1.0 / self.scale_factor * z
|
| 234 |
+
return self.first_stage_model.decode(z)
|
| 235 |
+
|
| 236 |
+
def mel_spectrogram_to_waveform(self, mel):
|
| 237 |
+
# Mel: [bs, 1, t-steps, fbins]
|
| 238 |
+
if len(mel.size()) == 4:
|
| 239 |
+
mel = mel.squeeze(1)
|
| 240 |
+
mel = mel.permute(0, 2, 1)
|
| 241 |
+
waveform = self.first_stage_model.vocoder(mel)
|
| 242 |
+
waveform = waveform.cpu().detach().numpy()
|
| 243 |
+
return waveform
|
| 244 |
+
|
| 245 |
+
@torch.no_grad()
|
| 246 |
+
def encode_first_stage(self, x):
|
| 247 |
+
return self.first_stage_model.encode(x)
|
| 248 |
+
|
| 249 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
| 250 |
+
|
| 251 |
+
if isinstance(cond, dict):
|
| 252 |
+
# hybrid case, cond is exptected to be a dict
|
| 253 |
+
pass
|
| 254 |
+
else:
|
| 255 |
+
if not isinstance(cond, list):
|
| 256 |
+
cond = [cond]
|
| 257 |
+
if self.model.conditioning_key == "concat":
|
| 258 |
+
key = "c_concat"
|
| 259 |
+
elif self.model.conditioning_key == "crossattn":
|
| 260 |
+
key = "c_crossattn"
|
| 261 |
+
else:
|
| 262 |
+
key = "c_film"
|
| 263 |
+
|
| 264 |
+
cond = {key: cond}
|
| 265 |
+
|
| 266 |
+
x_recon = self.model(x_noisy, t, **cond)
|
| 267 |
+
|
| 268 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
| 269 |
+
return x_recon[0]
|
| 270 |
+
else:
|
| 271 |
+
return x_recon
|
| 272 |
+
|
| 273 |
+
def p_mean_variance(
|
| 274 |
+
self,
|
| 275 |
+
x,
|
| 276 |
+
c,
|
| 277 |
+
t,
|
| 278 |
+
clip_denoised: bool,
|
| 279 |
+
return_codebook_ids=False,
|
| 280 |
+
quantize_denoised=False,
|
| 281 |
+
return_x0=False,
|
| 282 |
+
score_corrector=None,
|
| 283 |
+
corrector_kwargs=None,
|
| 284 |
+
):
|
| 285 |
+
t_in = t
|
| 286 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
| 287 |
+
|
| 288 |
+
if score_corrector is not None:
|
| 289 |
+
assert self.parameterization == "eps"
|
| 290 |
+
model_out = score_corrector.modify_score(
|
| 291 |
+
self, model_out, x, t, c, **corrector_kwargs
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
if return_codebook_ids:
|
| 295 |
+
model_out, logits = model_out
|
| 296 |
+
|
| 297 |
+
if self.parameterization == "eps":
|
| 298 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
| 299 |
+
elif self.parameterization == "x0":
|
| 300 |
+
x_recon = model_out
|
| 301 |
+
else:
|
| 302 |
+
raise NotImplementedError()
|
| 303 |
+
|
| 304 |
+
if clip_denoised:
|
| 305 |
+
x_recon.clamp_(-1.0, 1.0)
|
| 306 |
+
if quantize_denoised:
|
| 307 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
| 308 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
|
| 309 |
+
x_start=x_recon, x_t=x, t=t
|
| 310 |
+
)
|
| 311 |
+
if return_codebook_ids:
|
| 312 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
| 313 |
+
elif return_x0:
|
| 314 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
| 315 |
+
else:
|
| 316 |
+
return model_mean, posterior_variance, posterior_log_variance
|
| 317 |
+
|
| 318 |
+
@torch.no_grad()
|
| 319 |
+
def p_sample(
|
| 320 |
+
self,
|
| 321 |
+
x,
|
| 322 |
+
c,
|
| 323 |
+
t,
|
| 324 |
+
clip_denoised=False,
|
| 325 |
+
repeat_noise=False,
|
| 326 |
+
return_codebook_ids=False,
|
| 327 |
+
quantize_denoised=False,
|
| 328 |
+
return_x0=False,
|
| 329 |
+
temperature=1.0,
|
| 330 |
+
noise_dropout=0.0,
|
| 331 |
+
score_corrector=None,
|
| 332 |
+
corrector_kwargs=None,
|
| 333 |
+
):
|
| 334 |
+
b, *_, device = *x.shape, x.device
|
| 335 |
+
outputs = self.p_mean_variance(
|
| 336 |
+
x=x,
|
| 337 |
+
c=c,
|
| 338 |
+
t=t,
|
| 339 |
+
clip_denoised=clip_denoised,
|
| 340 |
+
return_codebook_ids=return_codebook_ids,
|
| 341 |
+
quantize_denoised=quantize_denoised,
|
| 342 |
+
return_x0=return_x0,
|
| 343 |
+
score_corrector=score_corrector,
|
| 344 |
+
corrector_kwargs=corrector_kwargs,
|
| 345 |
+
)
|
| 346 |
+
if return_codebook_ids:
|
| 347 |
+
raise DeprecationWarning("Support dropped.")
|
| 348 |
+
model_mean, _, model_log_variance, logits = outputs
|
| 349 |
+
elif return_x0:
|
| 350 |
+
model_mean, _, model_log_variance, x0 = outputs
|
| 351 |
+
else:
|
| 352 |
+
model_mean, _, model_log_variance = outputs
|
| 353 |
+
|
| 354 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
| 355 |
+
if noise_dropout > 0.0:
|
| 356 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
| 357 |
+
# no noise when t == 0
|
| 358 |
+
nonzero_mask = (
|
| 359 |
+
(1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous()
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
if return_codebook_ids:
|
| 363 |
+
return model_mean + nonzero_mask * (
|
| 364 |
+
0.5 * model_log_variance
|
| 365 |
+
).exp() * noise, logits.argmax(dim=1)
|
| 366 |
+
if return_x0:
|
| 367 |
+
return (
|
| 368 |
+
model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise,
|
| 369 |
+
x0,
|
| 370 |
+
)
|
| 371 |
+
else:
|
| 372 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
| 373 |
+
|
| 374 |
+
@torch.no_grad()
|
| 375 |
+
def progressive_denoising(
|
| 376 |
+
self,
|
| 377 |
+
cond,
|
| 378 |
+
shape,
|
| 379 |
+
verbose=True,
|
| 380 |
+
callback=None,
|
| 381 |
+
quantize_denoised=False,
|
| 382 |
+
img_callback=None,
|
| 383 |
+
mask=None,
|
| 384 |
+
x0=None,
|
| 385 |
+
temperature=1.0,
|
| 386 |
+
noise_dropout=0.0,
|
| 387 |
+
score_corrector=None,
|
| 388 |
+
corrector_kwargs=None,
|
| 389 |
+
batch_size=None,
|
| 390 |
+
x_T=None,
|
| 391 |
+
start_T=None,
|
| 392 |
+
log_every_t=None,
|
| 393 |
+
):
|
| 394 |
+
if not log_every_t:
|
| 395 |
+
log_every_t = self.log_every_t
|
| 396 |
+
timesteps = self.num_timesteps
|
| 397 |
+
if batch_size is not None:
|
| 398 |
+
b = batch_size if batch_size is not None else shape[0]
|
| 399 |
+
shape = [batch_size] + list(shape)
|
| 400 |
+
else:
|
| 401 |
+
b = batch_size = shape[0]
|
| 402 |
+
if x_T is None:
|
| 403 |
+
img = torch.randn(shape, device=self.device)
|
| 404 |
+
else:
|
| 405 |
+
img = x_T
|
| 406 |
+
intermediates = []
|
| 407 |
+
if cond is not None:
|
| 408 |
+
if isinstance(cond, dict):
|
| 409 |
+
cond = {
|
| 410 |
+
key: cond[key][:batch_size]
|
| 411 |
+
if not isinstance(cond[key], list)
|
| 412 |
+
else list(map(lambda x: x[:batch_size], cond[key]))
|
| 413 |
+
for key in cond
|
| 414 |
+
}
|
| 415 |
+
else:
|
| 416 |
+
cond = (
|
| 417 |
+
[c[:batch_size] for c in cond]
|
| 418 |
+
if isinstance(cond, list)
|
| 419 |
+
else cond[:batch_size]
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
if start_T is not None:
|
| 423 |
+
timesteps = min(timesteps, start_T)
|
| 424 |
+
iterator = (
|
| 425 |
+
tqdm(
|
| 426 |
+
reversed(range(0, timesteps)),
|
| 427 |
+
desc="Progressive Generation",
|
| 428 |
+
total=timesteps,
|
| 429 |
+
)
|
| 430 |
+
if verbose
|
| 431 |
+
else reversed(range(0, timesteps))
|
| 432 |
+
)
|
| 433 |
+
if type(temperature) == float:
|
| 434 |
+
temperature = [temperature] * timesteps
|
| 435 |
+
|
| 436 |
+
for i in iterator:
|
| 437 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
| 438 |
+
if self.shorten_cond_schedule:
|
| 439 |
+
assert self.model.conditioning_key != "hybrid"
|
| 440 |
+
tc = self.cond_ids[ts].to(cond.device)
|
| 441 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
| 442 |
+
|
| 443 |
+
img, x0_partial = self.p_sample(
|
| 444 |
+
img,
|
| 445 |
+
cond,
|
| 446 |
+
ts,
|
| 447 |
+
clip_denoised=self.clip_denoised,
|
| 448 |
+
quantize_denoised=quantize_denoised,
|
| 449 |
+
return_x0=True,
|
| 450 |
+
temperature=temperature[i],
|
| 451 |
+
noise_dropout=noise_dropout,
|
| 452 |
+
score_corrector=score_corrector,
|
| 453 |
+
corrector_kwargs=corrector_kwargs,
|
| 454 |
+
)
|
| 455 |
+
if mask is not None:
|
| 456 |
+
assert x0 is not None
|
| 457 |
+
img_orig = self.q_sample(x0, ts)
|
| 458 |
+
img = img_orig * mask + (1.0 - mask) * img
|
| 459 |
+
|
| 460 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
| 461 |
+
intermediates.append(x0_partial)
|
| 462 |
+
if callback:
|
| 463 |
+
callback(i)
|
| 464 |
+
if img_callback:
|
| 465 |
+
img_callback(img, i)
|
| 466 |
+
return img, intermediates
|
| 467 |
+
|
| 468 |
+
@torch.no_grad()
|
| 469 |
+
def p_sample_loop(
|
| 470 |
+
self,
|
| 471 |
+
cond,
|
| 472 |
+
shape,
|
| 473 |
+
return_intermediates=False,
|
| 474 |
+
x_T=None,
|
| 475 |
+
verbose=True,
|
| 476 |
+
callback=None,
|
| 477 |
+
timesteps=None,
|
| 478 |
+
quantize_denoised=False,
|
| 479 |
+
mask=None,
|
| 480 |
+
x0=None,
|
| 481 |
+
img_callback=None,
|
| 482 |
+
start_T=None,
|
| 483 |
+
log_every_t=None,
|
| 484 |
+
):
|
| 485 |
+
|
| 486 |
+
if not log_every_t:
|
| 487 |
+
log_every_t = self.log_every_t
|
| 488 |
+
device = self.betas.device
|
| 489 |
+
b = shape[0]
|
| 490 |
+
if x_T is None:
|
| 491 |
+
img = torch.randn(shape, device=device)
|
| 492 |
+
else:
|
| 493 |
+
img = x_T
|
| 494 |
+
|
| 495 |
+
intermediates = [img]
|
| 496 |
+
if timesteps is None:
|
| 497 |
+
timesteps = self.num_timesteps
|
| 498 |
+
|
| 499 |
+
if start_T is not None:
|
| 500 |
+
timesteps = min(timesteps, start_T)
|
| 501 |
+
iterator = (
|
| 502 |
+
tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps)
|
| 503 |
+
if verbose
|
| 504 |
+
else reversed(range(0, timesteps))
|
| 505 |
+
)
|
| 506 |
+
|
| 507 |
+
if mask is not None:
|
| 508 |
+
assert x0 is not None
|
| 509 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
| 510 |
+
|
| 511 |
+
for i in iterator:
|
| 512 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
| 513 |
+
if self.shorten_cond_schedule:
|
| 514 |
+
assert self.model.conditioning_key != "hybrid"
|
| 515 |
+
tc = self.cond_ids[ts].to(cond.device)
|
| 516 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
| 517 |
+
|
| 518 |
+
img = self.p_sample(
|
| 519 |
+
img,
|
| 520 |
+
cond,
|
| 521 |
+
ts,
|
| 522 |
+
clip_denoised=self.clip_denoised,
|
| 523 |
+
quantize_denoised=quantize_denoised,
|
| 524 |
+
)
|
| 525 |
+
if mask is not None:
|
| 526 |
+
img_orig = self.q_sample(x0, ts)
|
| 527 |
+
img = img_orig * mask + (1.0 - mask) * img
|
| 528 |
+
|
| 529 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
| 530 |
+
intermediates.append(img)
|
| 531 |
+
if callback:
|
| 532 |
+
callback(i)
|
| 533 |
+
if img_callback:
|
| 534 |
+
img_callback(img, i)
|
| 535 |
+
|
| 536 |
+
if return_intermediates:
|
| 537 |
+
return img, intermediates
|
| 538 |
+
return img
|
| 539 |
+
|
| 540 |
+
@torch.no_grad()
|
| 541 |
+
def sample(
|
| 542 |
+
self,
|
| 543 |
+
cond,
|
| 544 |
+
batch_size=16,
|
| 545 |
+
return_intermediates=False,
|
| 546 |
+
x_T=None,
|
| 547 |
+
verbose=True,
|
| 548 |
+
timesteps=None,
|
| 549 |
+
quantize_denoised=False,
|
| 550 |
+
mask=None,
|
| 551 |
+
x0=None,
|
| 552 |
+
shape=None,
|
| 553 |
+
**kwargs,
|
| 554 |
+
):
|
| 555 |
+
if shape is None:
|
| 556 |
+
shape = (batch_size, self.channels, self.latent_t_size, self.latent_f_size)
|
| 557 |
+
if cond is not None:
|
| 558 |
+
if isinstance(cond, dict):
|
| 559 |
+
cond = {
|
| 560 |
+
key: cond[key][:batch_size]
|
| 561 |
+
if not isinstance(cond[key], list)
|
| 562 |
+
else list(map(lambda x: x[:batch_size], cond[key]))
|
| 563 |
+
for key in cond
|
| 564 |
+
}
|
| 565 |
+
else:
|
| 566 |
+
cond = (
|
| 567 |
+
[c[:batch_size] for c in cond]
|
| 568 |
+
if isinstance(cond, list)
|
| 569 |
+
else cond[:batch_size]
|
| 570 |
+
)
|
| 571 |
+
return self.p_sample_loop(
|
| 572 |
+
cond,
|
| 573 |
+
shape,
|
| 574 |
+
return_intermediates=return_intermediates,
|
| 575 |
+
x_T=x_T,
|
| 576 |
+
verbose=verbose,
|
| 577 |
+
timesteps=timesteps,
|
| 578 |
+
quantize_denoised=quantize_denoised,
|
| 579 |
+
mask=mask,
|
| 580 |
+
x0=x0,
|
| 581 |
+
**kwargs,
|
| 582 |
+
)
|
| 583 |
+
|
| 584 |
+
@torch.no_grad()
|
| 585 |
+
def sample_log(
|
| 586 |
+
self,
|
| 587 |
+
cond,
|
| 588 |
+
batch_size,
|
| 589 |
+
ddim,
|
| 590 |
+
ddim_steps,
|
| 591 |
+
unconditional_guidance_scale=1.0,
|
| 592 |
+
unconditional_conditioning=None,
|
| 593 |
+
use_plms=False,
|
| 594 |
+
mask=None,
|
| 595 |
+
**kwargs,
|
| 596 |
+
):
|
| 597 |
+
|
| 598 |
+
if mask is not None:
|
| 599 |
+
shape = (self.channels, mask.size()[-2], mask.size()[-1])
|
| 600 |
+
else:
|
| 601 |
+
shape = (self.channels, self.latent_t_size, self.latent_f_size)
|
| 602 |
+
|
| 603 |
+
intermediate = None
|
| 604 |
+
if ddim and not use_plms:
|
| 605 |
+
# print("Use ddim sampler")
|
| 606 |
+
|
| 607 |
+
ddim_sampler = DDIMSampler(self)
|
| 608 |
+
samples, intermediates = ddim_sampler.sample(
|
| 609 |
+
ddim_steps,
|
| 610 |
+
batch_size,
|
| 611 |
+
shape,
|
| 612 |
+
cond,
|
| 613 |
+
verbose=False,
|
| 614 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 615 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 616 |
+
mask=mask,
|
| 617 |
+
**kwargs,
|
| 618 |
+
)
|
| 619 |
+
|
| 620 |
+
else:
|
| 621 |
+
# print("Use DDPM sampler")
|
| 622 |
+
samples, intermediates = self.sample(
|
| 623 |
+
cond=cond,
|
| 624 |
+
batch_size=batch_size,
|
| 625 |
+
return_intermediates=True,
|
| 626 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 627 |
+
mask=mask,
|
| 628 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 629 |
+
**kwargs,
|
| 630 |
+
)
|
| 631 |
+
|
| 632 |
+
return samples, intermediate
|
| 633 |
+
|
| 634 |
+
@torch.no_grad()
|
| 635 |
+
def generate_sample(
|
| 636 |
+
self,
|
| 637 |
+
batchs,
|
| 638 |
+
ddim_steps=200,
|
| 639 |
+
ddim_eta=1.0,
|
| 640 |
+
x_T=None,
|
| 641 |
+
n_candidate_gen_per_text=1,
|
| 642 |
+
unconditional_guidance_scale=1.0,
|
| 643 |
+
unconditional_conditioning=None,
|
| 644 |
+
name="waveform",
|
| 645 |
+
use_plms=False,
|
| 646 |
+
save=False,
|
| 647 |
+
**kwargs,
|
| 648 |
+
):
|
| 649 |
+
# Generate n_candidate_gen_per_text times and select the best
|
| 650 |
+
# Batch: audio, text, fnames
|
| 651 |
+
assert x_T is None
|
| 652 |
+
try:
|
| 653 |
+
batchs = iter(batchs)
|
| 654 |
+
except TypeError:
|
| 655 |
+
raise ValueError("The first input argument should be an iterable object")
|
| 656 |
+
|
| 657 |
+
if use_plms:
|
| 658 |
+
assert ddim_steps is not None
|
| 659 |
+
use_ddim = ddim_steps is not None
|
| 660 |
+
# waveform_save_path = os.path.join(self.get_log_dir(), name)
|
| 661 |
+
# os.makedirs(waveform_save_path, exist_ok=True)
|
| 662 |
+
# print("Waveform save path: ", waveform_save_path)
|
| 663 |
+
|
| 664 |
+
with self.ema_scope("Generate"):
|
| 665 |
+
for batch in batchs:
|
| 666 |
+
z, c = self.get_input(
|
| 667 |
+
batch,
|
| 668 |
+
self.first_stage_key,
|
| 669 |
+
cond_key=self.cond_stage_key,
|
| 670 |
+
return_first_stage_outputs=False,
|
| 671 |
+
force_c_encode=True,
|
| 672 |
+
return_original_cond=False,
|
| 673 |
+
bs=None,
|
| 674 |
+
)
|
| 675 |
+
text = super().get_input(batch, "text")
|
| 676 |
+
|
| 677 |
+
# Generate multiple samples
|
| 678 |
+
batch_size = z.shape[0] * n_candidate_gen_per_text
|
| 679 |
+
c = torch.cat([c] * n_candidate_gen_per_text, dim=0)
|
| 680 |
+
text = text * n_candidate_gen_per_text
|
| 681 |
+
|
| 682 |
+
if unconditional_guidance_scale != 1.0:
|
| 683 |
+
unconditional_conditioning = (
|
| 684 |
+
self.cond_stage_model.get_unconditional_condition(batch_size)
|
| 685 |
+
)
|
| 686 |
+
|
| 687 |
+
samples, _ = self.sample_log(
|
| 688 |
+
cond=c,
|
| 689 |
+
batch_size=batch_size,
|
| 690 |
+
x_T=x_T,
|
| 691 |
+
ddim=use_ddim,
|
| 692 |
+
ddim_steps=ddim_steps,
|
| 693 |
+
eta=ddim_eta,
|
| 694 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 695 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 696 |
+
use_plms=use_plms,
|
| 697 |
+
)
|
| 698 |
+
|
| 699 |
+
if(torch.max(torch.abs(samples)) > 1e2):
|
| 700 |
+
samples = torch.clip(samples, min=-10, max=10)
|
| 701 |
+
|
| 702 |
+
mel = self.decode_first_stage(samples)
|
| 703 |
+
|
| 704 |
+
waveform = self.mel_spectrogram_to_waveform(mel)
|
| 705 |
+
|
| 706 |
+
if waveform.shape[0] > 1:
|
| 707 |
+
similarity = self.cond_stage_model.cos_similarity(
|
| 708 |
+
torch.FloatTensor(waveform).squeeze(1), text
|
| 709 |
+
)
|
| 710 |
+
|
| 711 |
+
best_index = []
|
| 712 |
+
for i in range(z.shape[0]):
|
| 713 |
+
candidates = similarity[i :: z.shape[0]]
|
| 714 |
+
max_index = torch.argmax(candidates).item()
|
| 715 |
+
best_index.append(i + max_index * z.shape[0])
|
| 716 |
+
|
| 717 |
+
waveform = waveform[best_index]
|
| 718 |
+
# print("Similarity between generated audio and text", similarity)
|
| 719 |
+
# print("Choose the following indexes:", best_index)
|
| 720 |
+
|
| 721 |
+
return waveform
|
| 722 |
+
|
| 723 |
+
@torch.no_grad()
|
| 724 |
+
def generate_sample_masked(
|
| 725 |
+
self,
|
| 726 |
+
batchs,
|
| 727 |
+
ddim_steps=200,
|
| 728 |
+
ddim_eta=1.0,
|
| 729 |
+
x_T=None,
|
| 730 |
+
n_candidate_gen_per_text=1,
|
| 731 |
+
unconditional_guidance_scale=1.0,
|
| 732 |
+
unconditional_conditioning=None,
|
| 733 |
+
name="waveform",
|
| 734 |
+
use_plms=False,
|
| 735 |
+
time_mask_ratio_start_and_end=(0.25, 0.75),
|
| 736 |
+
freq_mask_ratio_start_and_end=(0.75, 1.0),
|
| 737 |
+
save=False,
|
| 738 |
+
**kwargs,
|
| 739 |
+
):
|
| 740 |
+
# Generate n_candidate_gen_per_text times and select the best
|
| 741 |
+
# Batch: audio, text, fnames
|
| 742 |
+
assert x_T is None
|
| 743 |
+
try:
|
| 744 |
+
batchs = iter(batchs)
|
| 745 |
+
except TypeError:
|
| 746 |
+
raise ValueError("The first input argument should be an iterable object")
|
| 747 |
+
|
| 748 |
+
if use_plms:
|
| 749 |
+
assert ddim_steps is not None
|
| 750 |
+
use_ddim = ddim_steps is not None
|
| 751 |
+
# waveform_save_path = os.path.join(self.get_log_dir(), name)
|
| 752 |
+
# os.makedirs(waveform_save_path, exist_ok=True)
|
| 753 |
+
# print("Waveform save path: ", waveform_save_path)
|
| 754 |
+
|
| 755 |
+
with self.ema_scope("Generate"):
|
| 756 |
+
for batch in batchs:
|
| 757 |
+
z, c = self.get_input(
|
| 758 |
+
batch,
|
| 759 |
+
self.first_stage_key,
|
| 760 |
+
cond_key=self.cond_stage_key,
|
| 761 |
+
return_first_stage_outputs=False,
|
| 762 |
+
force_c_encode=True,
|
| 763 |
+
return_original_cond=False,
|
| 764 |
+
bs=None,
|
| 765 |
+
)
|
| 766 |
+
text = super().get_input(batch, "text")
|
| 767 |
+
|
| 768 |
+
# Generate multiple samples
|
| 769 |
+
batch_size = z.shape[0] * n_candidate_gen_per_text
|
| 770 |
+
|
| 771 |
+
_, h, w = z.shape[0], z.shape[2], z.shape[3]
|
| 772 |
+
|
| 773 |
+
mask = torch.ones(batch_size, h, w).to(self.device)
|
| 774 |
+
|
| 775 |
+
mask[:, int(h * time_mask_ratio_start_and_end[0]) : int(h * time_mask_ratio_start_and_end[1]), :] = 0
|
| 776 |
+
mask[:, :, int(w * freq_mask_ratio_start_and_end[0]) : int(w * freq_mask_ratio_start_and_end[1])] = 0
|
| 777 |
+
mask = mask[:, None, ...]
|
| 778 |
+
|
| 779 |
+
c = torch.cat([c] * n_candidate_gen_per_text, dim=0)
|
| 780 |
+
text = text * n_candidate_gen_per_text
|
| 781 |
+
|
| 782 |
+
if unconditional_guidance_scale != 1.0:
|
| 783 |
+
unconditional_conditioning = (
|
| 784 |
+
self.cond_stage_model.get_unconditional_condition(batch_size)
|
| 785 |
+
)
|
| 786 |
+
|
| 787 |
+
samples, _ = self.sample_log(
|
| 788 |
+
cond=c,
|
| 789 |
+
batch_size=batch_size,
|
| 790 |
+
x_T=x_T,
|
| 791 |
+
ddim=use_ddim,
|
| 792 |
+
ddim_steps=ddim_steps,
|
| 793 |
+
eta=ddim_eta,
|
| 794 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 795 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 796 |
+
use_plms=use_plms, mask=mask, x0=torch.cat([z] * n_candidate_gen_per_text)
|
| 797 |
+
)
|
| 798 |
+
|
| 799 |
+
mel = self.decode_first_stage(samples)
|
| 800 |
+
|
| 801 |
+
waveform = self.mel_spectrogram_to_waveform(mel)
|
| 802 |
+
|
| 803 |
+
if waveform.shape[0] > 1:
|
| 804 |
+
similarity = self.cond_stage_model.cos_similarity(
|
| 805 |
+
torch.FloatTensor(waveform).squeeze(1), text
|
| 806 |
+
)
|
| 807 |
+
|
| 808 |
+
best_index = []
|
| 809 |
+
for i in range(z.shape[0]):
|
| 810 |
+
candidates = similarity[i :: z.shape[0]]
|
| 811 |
+
max_index = torch.argmax(candidates).item()
|
| 812 |
+
best_index.append(i + max_index * z.shape[0])
|
| 813 |
+
|
| 814 |
+
waveform = waveform[best_index]
|
| 815 |
+
# print("Similarity between generated audio and text", similarity)
|
| 816 |
+
# print("Choose the following indexes:", best_index)
|
| 817 |
+
|
| 818 |
+
return waveform
|
audioldm/pipeline.py
ADDED
|
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import argparse
|
| 4 |
+
import yaml
|
| 5 |
+
import torch
|
| 6 |
+
from torch import autocast
|
| 7 |
+
from tqdm import tqdm, trange
|
| 8 |
+
|
| 9 |
+
from audioldm import LatentDiffusion, seed_everything
|
| 10 |
+
from audioldm.utils import default_audioldm_config, get_duration, get_bit_depth, get_metadata, download_checkpoint
|
| 11 |
+
from audioldm.audio import wav_to_fbank, TacotronSTFT, read_wav_file
|
| 12 |
+
from audioldm.latent_diffusion.ddim import DDIMSampler
|
| 13 |
+
from einops import repeat
|
| 14 |
+
import os
|
| 15 |
+
|
| 16 |
+
def make_batch_for_text_to_audio(text, waveform=None, fbank=None, batchsize=1):
|
| 17 |
+
text = [text] * batchsize
|
| 18 |
+
if batchsize < 1:
|
| 19 |
+
print("Warning: Batchsize must be at least 1. Batchsize is set to .")
|
| 20 |
+
|
| 21 |
+
if(fbank is None):
|
| 22 |
+
fbank = torch.zeros((batchsize, 1024, 64)) # Not used, here to keep the code format
|
| 23 |
+
else:
|
| 24 |
+
fbank = torch.FloatTensor(fbank)
|
| 25 |
+
fbank = fbank.expand(batchsize, 1024, 64)
|
| 26 |
+
assert fbank.size(0) == batchsize
|
| 27 |
+
|
| 28 |
+
stft = torch.zeros((batchsize, 1024, 512)) # Not used
|
| 29 |
+
|
| 30 |
+
if(waveform is None):
|
| 31 |
+
waveform = torch.zeros((batchsize, 160000)) # Not used
|
| 32 |
+
else:
|
| 33 |
+
waveform = torch.FloatTensor(waveform)
|
| 34 |
+
waveform = waveform.expand(batchsize, -1)
|
| 35 |
+
assert waveform.size(0) == batchsize
|
| 36 |
+
|
| 37 |
+
fname = [""] * batchsize # Not used
|
| 38 |
+
|
| 39 |
+
batch = (
|
| 40 |
+
fbank,
|
| 41 |
+
stft,
|
| 42 |
+
None,
|
| 43 |
+
fname,
|
| 44 |
+
waveform,
|
| 45 |
+
text,
|
| 46 |
+
)
|
| 47 |
+
return batch
|
| 48 |
+
|
| 49 |
+
def round_up_duration(duration):
|
| 50 |
+
return int(round(duration/2.5) + 1) * 2.5
|
| 51 |
+
|
| 52 |
+
def build_model(
|
| 53 |
+
ckpt_path=None,
|
| 54 |
+
config=None,
|
| 55 |
+
model_name="audioldm-s-full"
|
| 56 |
+
):
|
| 57 |
+
print("Load AudioLDM: %s", model_name)
|
| 58 |
+
|
| 59 |
+
if(ckpt_path is None):
|
| 60 |
+
ckpt_path = get_metadata()[model_name]["path"]
|
| 61 |
+
|
| 62 |
+
if(not os.path.exists(ckpt_path)):
|
| 63 |
+
download_checkpoint(model_name)
|
| 64 |
+
|
| 65 |
+
if torch.cuda.is_available():
|
| 66 |
+
device = torch.device("cuda:0")
|
| 67 |
+
else:
|
| 68 |
+
device = torch.device("cpu")
|
| 69 |
+
|
| 70 |
+
if config is not None:
|
| 71 |
+
assert type(config) is str
|
| 72 |
+
config = yaml.load(open(config, "r"), Loader=yaml.FullLoader)
|
| 73 |
+
else:
|
| 74 |
+
config = default_audioldm_config(model_name)
|
| 75 |
+
|
| 76 |
+
# Use text as condition instead of using waveform during training
|
| 77 |
+
config["model"]["params"]["device"] = device
|
| 78 |
+
config["model"]["params"]["cond_stage_key"] = "text"
|
| 79 |
+
|
| 80 |
+
# No normalization here
|
| 81 |
+
latent_diffusion = LatentDiffusion(**config["model"]["params"])
|
| 82 |
+
|
| 83 |
+
resume_from_checkpoint = ckpt_path
|
| 84 |
+
|
| 85 |
+
checkpoint = torch.load(resume_from_checkpoint, map_location=device)
|
| 86 |
+
latent_diffusion.load_state_dict(checkpoint["state_dict"])
|
| 87 |
+
|
| 88 |
+
latent_diffusion.eval()
|
| 89 |
+
latent_diffusion = latent_diffusion.to(device)
|
| 90 |
+
|
| 91 |
+
latent_diffusion.cond_stage_model.embed_mode = "text"
|
| 92 |
+
return latent_diffusion
|
| 93 |
+
|
| 94 |
+
def duration_to_latent_t_size(duration):
|
| 95 |
+
return int(duration * 25.6)
|
| 96 |
+
|
| 97 |
+
def set_cond_audio(latent_diffusion):
|
| 98 |
+
latent_diffusion.cond_stage_key = "waveform"
|
| 99 |
+
latent_diffusion.cond_stage_model.embed_mode="audio"
|
| 100 |
+
return latent_diffusion
|
| 101 |
+
|
| 102 |
+
def set_cond_text(latent_diffusion):
|
| 103 |
+
latent_diffusion.cond_stage_key = "text"
|
| 104 |
+
latent_diffusion.cond_stage_model.embed_mode="text"
|
| 105 |
+
return latent_diffusion
|
| 106 |
+
|
| 107 |
+
def text_to_audio(
|
| 108 |
+
latent_diffusion,
|
| 109 |
+
text,
|
| 110 |
+
original_audio_file_path = None,
|
| 111 |
+
seed=42,
|
| 112 |
+
ddim_steps=200,
|
| 113 |
+
duration=10,
|
| 114 |
+
batchsize=1,
|
| 115 |
+
guidance_scale=2.5,
|
| 116 |
+
n_candidate_gen_per_text=3,
|
| 117 |
+
config=None,
|
| 118 |
+
):
|
| 119 |
+
seed_everything(int(seed))
|
| 120 |
+
waveform = None
|
| 121 |
+
if(original_audio_file_path is not None):
|
| 122 |
+
waveform = read_wav_file(original_audio_file_path, int(duration * 102.4) * 160)
|
| 123 |
+
|
| 124 |
+
batch = make_batch_for_text_to_audio(text, waveform=waveform, batchsize=batchsize)
|
| 125 |
+
|
| 126 |
+
latent_diffusion.latent_t_size = duration_to_latent_t_size(duration)
|
| 127 |
+
|
| 128 |
+
if(waveform is not None):
|
| 129 |
+
print("Generate audio that has similar content as %s" % original_audio_file_path)
|
| 130 |
+
latent_diffusion = set_cond_audio(latent_diffusion)
|
| 131 |
+
else:
|
| 132 |
+
print("Generate audio using text %s" % text)
|
| 133 |
+
latent_diffusion = set_cond_text(latent_diffusion)
|
| 134 |
+
|
| 135 |
+
with torch.no_grad():
|
| 136 |
+
waveform = latent_diffusion.generate_sample(
|
| 137 |
+
[batch],
|
| 138 |
+
unconditional_guidance_scale=guidance_scale,
|
| 139 |
+
ddim_steps=ddim_steps,
|
| 140 |
+
n_candidate_gen_per_text=n_candidate_gen_per_text,
|
| 141 |
+
duration=duration,
|
| 142 |
+
)
|
| 143 |
+
return waveform
|
| 144 |
+
|
| 145 |
+
def style_transfer(
|
| 146 |
+
latent_diffusion,
|
| 147 |
+
text,
|
| 148 |
+
original_audio_file_path,
|
| 149 |
+
transfer_strength,
|
| 150 |
+
seed=42,
|
| 151 |
+
duration=10,
|
| 152 |
+
batchsize=1,
|
| 153 |
+
guidance_scale=2.5,
|
| 154 |
+
ddim_steps=200,
|
| 155 |
+
config=None,
|
| 156 |
+
):
|
| 157 |
+
if torch.cuda.is_available():
|
| 158 |
+
device = torch.device("cuda:0")
|
| 159 |
+
else:
|
| 160 |
+
device = torch.device("cpu")
|
| 161 |
+
|
| 162 |
+
assert original_audio_file_path is not None, "You need to provide the original audio file path"
|
| 163 |
+
|
| 164 |
+
audio_file_duration = get_duration(original_audio_file_path)
|
| 165 |
+
|
| 166 |
+
assert get_bit_depth(original_audio_file_path) == 16, "The bit depth of the original audio file %s must be 16" % original_audio_file_path
|
| 167 |
+
|
| 168 |
+
# if(duration > 20):
|
| 169 |
+
# print("Warning: The duration of the audio file %s must be less than 20 seconds. Longer duration will result in Nan in model output (we are still debugging that); Automatically set duration to 20 seconds")
|
| 170 |
+
# duration = 20
|
| 171 |
+
|
| 172 |
+
if(duration >= audio_file_duration):
|
| 173 |
+
print("Warning: Duration you specified %s-seconds must equal or smaller than the audio file duration %ss" % (duration, audio_file_duration))
|
| 174 |
+
duration = round_up_duration(audio_file_duration)
|
| 175 |
+
print("Set new duration as %s-seconds" % duration)
|
| 176 |
+
|
| 177 |
+
# duration = round_up_duration(duration)
|
| 178 |
+
|
| 179 |
+
latent_diffusion = set_cond_text(latent_diffusion)
|
| 180 |
+
|
| 181 |
+
if config is not None:
|
| 182 |
+
assert type(config) is str
|
| 183 |
+
config = yaml.load(open(config, "r"), Loader=yaml.FullLoader)
|
| 184 |
+
else:
|
| 185 |
+
config = default_audioldm_config()
|
| 186 |
+
|
| 187 |
+
seed_everything(int(seed))
|
| 188 |
+
# latent_diffusion.latent_t_size = duration_to_latent_t_size(duration)
|
| 189 |
+
latent_diffusion.cond_stage_model.embed_mode = "text"
|
| 190 |
+
|
| 191 |
+
fn_STFT = TacotronSTFT(
|
| 192 |
+
config["preprocessing"]["stft"]["filter_length"],
|
| 193 |
+
config["preprocessing"]["stft"]["hop_length"],
|
| 194 |
+
config["preprocessing"]["stft"]["win_length"],
|
| 195 |
+
config["preprocessing"]["mel"]["n_mel_channels"],
|
| 196 |
+
config["preprocessing"]["audio"]["sampling_rate"],
|
| 197 |
+
config["preprocessing"]["mel"]["mel_fmin"],
|
| 198 |
+
config["preprocessing"]["mel"]["mel_fmax"],
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
mel, _, _ = wav_to_fbank(
|
| 202 |
+
original_audio_file_path, target_length=int(duration * 102.4), fn_STFT=fn_STFT
|
| 203 |
+
)
|
| 204 |
+
mel = mel.unsqueeze(0).unsqueeze(0).to(device)
|
| 205 |
+
mel = repeat(mel, "1 ... -> b ...", b=batchsize)
|
| 206 |
+
init_latent = latent_diffusion.get_first_stage_encoding(
|
| 207 |
+
latent_diffusion.encode_first_stage(mel)
|
| 208 |
+
) # move to latent space, encode and sample
|
| 209 |
+
if(torch.max(torch.abs(init_latent)) > 1e2):
|
| 210 |
+
init_latent = torch.clip(init_latent, min=-10, max=10)
|
| 211 |
+
sampler = DDIMSampler(latent_diffusion)
|
| 212 |
+
sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=1.0, verbose=False)
|
| 213 |
+
|
| 214 |
+
t_enc = int(transfer_strength * ddim_steps)
|
| 215 |
+
prompts = text
|
| 216 |
+
|
| 217 |
+
with torch.no_grad():
|
| 218 |
+
with autocast("cuda"):
|
| 219 |
+
with latent_diffusion.ema_scope():
|
| 220 |
+
uc = None
|
| 221 |
+
if guidance_scale != 1.0:
|
| 222 |
+
uc = latent_diffusion.cond_stage_model.get_unconditional_condition(
|
| 223 |
+
batchsize
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
c = latent_diffusion.get_learned_conditioning([prompts] * batchsize)
|
| 227 |
+
z_enc = sampler.stochastic_encode(
|
| 228 |
+
init_latent, torch.tensor([t_enc] * batchsize).to(device)
|
| 229 |
+
)
|
| 230 |
+
samples = sampler.decode(
|
| 231 |
+
z_enc,
|
| 232 |
+
c,
|
| 233 |
+
t_enc,
|
| 234 |
+
unconditional_guidance_scale=guidance_scale,
|
| 235 |
+
unconditional_conditioning=uc,
|
| 236 |
+
)
|
| 237 |
+
# x_samples = latent_diffusion.decode_first_stage(samples) # Will result in Nan in output
|
| 238 |
+
# print(torch.sum(torch.isnan(samples)))
|
| 239 |
+
x_samples = latent_diffusion.decode_first_stage(samples)
|
| 240 |
+
# print(x_samples)
|
| 241 |
+
x_samples = latent_diffusion.decode_first_stage(samples[:,:,:-3,:])
|
| 242 |
+
# print(x_samples)
|
| 243 |
+
waveform = latent_diffusion.first_stage_model.decode_to_waveform(
|
| 244 |
+
x_samples
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
return waveform
|
| 248 |
+
|
| 249 |
+
def super_resolution_and_inpainting(
|
| 250 |
+
latent_diffusion,
|
| 251 |
+
text,
|
| 252 |
+
original_audio_file_path = None,
|
| 253 |
+
seed=42,
|
| 254 |
+
ddim_steps=200,
|
| 255 |
+
duration=None,
|
| 256 |
+
batchsize=1,
|
| 257 |
+
guidance_scale=2.5,
|
| 258 |
+
n_candidate_gen_per_text=3,
|
| 259 |
+
time_mask_ratio_start_and_end=(0.10, 0.15), # regenerate the 10% to 15% of the time steps in the spectrogram
|
| 260 |
+
# time_mask_ratio_start_and_end=(1.0, 1.0), # no inpainting
|
| 261 |
+
# freq_mask_ratio_start_and_end=(0.75, 1.0), # regenerate the higher 75% to 100% mel bins
|
| 262 |
+
freq_mask_ratio_start_and_end=(1.0, 1.0), # no super-resolution
|
| 263 |
+
config=None,
|
| 264 |
+
):
|
| 265 |
+
seed_everything(int(seed))
|
| 266 |
+
if config is not None:
|
| 267 |
+
assert type(config) is str
|
| 268 |
+
config = yaml.load(open(config, "r"), Loader=yaml.FullLoader)
|
| 269 |
+
else:
|
| 270 |
+
config = default_audioldm_config()
|
| 271 |
+
fn_STFT = TacotronSTFT(
|
| 272 |
+
config["preprocessing"]["stft"]["filter_length"],
|
| 273 |
+
config["preprocessing"]["stft"]["hop_length"],
|
| 274 |
+
config["preprocessing"]["stft"]["win_length"],
|
| 275 |
+
config["preprocessing"]["mel"]["n_mel_channels"],
|
| 276 |
+
config["preprocessing"]["audio"]["sampling_rate"],
|
| 277 |
+
config["preprocessing"]["mel"]["mel_fmin"],
|
| 278 |
+
config["preprocessing"]["mel"]["mel_fmax"],
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
# waveform = read_wav_file(original_audio_file_path, None)
|
| 282 |
+
mel, _, _ = wav_to_fbank(
|
| 283 |
+
original_audio_file_path, target_length=int(duration * 102.4), fn_STFT=fn_STFT
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
batch = make_batch_for_text_to_audio(text, fbank=mel[None,...], batchsize=batchsize)
|
| 287 |
+
|
| 288 |
+
# latent_diffusion.latent_t_size = duration_to_latent_t_size(duration)
|
| 289 |
+
latent_diffusion = set_cond_text(latent_diffusion)
|
| 290 |
+
|
| 291 |
+
with torch.no_grad():
|
| 292 |
+
waveform = latent_diffusion.generate_sample_masked(
|
| 293 |
+
[batch],
|
| 294 |
+
unconditional_guidance_scale=guidance_scale,
|
| 295 |
+
ddim_steps=ddim_steps,
|
| 296 |
+
n_candidate_gen_per_text=n_candidate_gen_per_text,
|
| 297 |
+
duration=duration,
|
| 298 |
+
time_mask_ratio_start_and_end=time_mask_ratio_start_and_end,
|
| 299 |
+
freq_mask_ratio_start_and_end=freq_mask_ratio_start_and_end
|
| 300 |
+
)
|
| 301 |
+
return waveform
|
audioldm/utils.py
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import contextlib
|
| 2 |
+
import importlib
|
| 3 |
+
|
| 4 |
+
from inspect import isfunction
|
| 5 |
+
import os
|
| 6 |
+
import soundfile as sf
|
| 7 |
+
import time
|
| 8 |
+
import wave
|
| 9 |
+
|
| 10 |
+
import urllib.request
|
| 11 |
+
import progressbar
|
| 12 |
+
|
| 13 |
+
CACHE_DIR = os.getenv(
|
| 14 |
+
"AUDIOLDM_CACHE_DIR",
|
| 15 |
+
os.path.join(os.path.expanduser("~"), ".cache/audioldm"))
|
| 16 |
+
|
| 17 |
+
def get_duration(fname):
|
| 18 |
+
with contextlib.closing(wave.open(fname, 'r')) as f:
|
| 19 |
+
frames = f.getnframes()
|
| 20 |
+
rate = f.getframerate()
|
| 21 |
+
return frames / float(rate)
|
| 22 |
+
|
| 23 |
+
def get_bit_depth(fname):
|
| 24 |
+
with contextlib.closing(wave.open(fname, 'r')) as f:
|
| 25 |
+
bit_depth = f.getsampwidth() * 8
|
| 26 |
+
return bit_depth
|
| 27 |
+
|
| 28 |
+
def get_time():
|
| 29 |
+
t = time.localtime()
|
| 30 |
+
return time.strftime("%d_%m_%Y_%H_%M_%S", t)
|
| 31 |
+
|
| 32 |
+
def seed_everything(seed):
|
| 33 |
+
import random, os
|
| 34 |
+
import numpy as np
|
| 35 |
+
import torch
|
| 36 |
+
|
| 37 |
+
random.seed(seed)
|
| 38 |
+
os.environ["PYTHONHASHSEED"] = str(seed)
|
| 39 |
+
np.random.seed(seed)
|
| 40 |
+
torch.manual_seed(seed)
|
| 41 |
+
torch.cuda.manual_seed(seed)
|
| 42 |
+
torch.backends.cudnn.deterministic = True
|
| 43 |
+
torch.backends.cudnn.benchmark = True
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def save_wave(waveform, savepath, name="outwav"):
|
| 47 |
+
if type(name) is not list:
|
| 48 |
+
name = [name] * waveform.shape[0]
|
| 49 |
+
|
| 50 |
+
for i in range(waveform.shape[0]):
|
| 51 |
+
path = os.path.join(
|
| 52 |
+
savepath,
|
| 53 |
+
"%s_%s.wav"
|
| 54 |
+
% (
|
| 55 |
+
os.path.basename(name[i])
|
| 56 |
+
if (not ".wav" in name[i])
|
| 57 |
+
else os.path.basename(name[i]).split(".")[0],
|
| 58 |
+
i,
|
| 59 |
+
),
|
| 60 |
+
)
|
| 61 |
+
print("Save audio to %s" % path)
|
| 62 |
+
sf.write(path, waveform[i, 0], samplerate=16000)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def exists(x):
|
| 66 |
+
return x is not None
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def default(val, d):
|
| 70 |
+
if exists(val):
|
| 71 |
+
return val
|
| 72 |
+
return d() if isfunction(d) else d
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def count_params(model, verbose=False):
|
| 76 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 77 |
+
if verbose:
|
| 78 |
+
print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
|
| 79 |
+
return total_params
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_obj_from_str(string, reload=False):
|
| 83 |
+
module, cls = string.rsplit(".", 1)
|
| 84 |
+
if reload:
|
| 85 |
+
module_imp = importlib.import_module(module)
|
| 86 |
+
importlib.reload(module_imp)
|
| 87 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def instantiate_from_config(config):
|
| 91 |
+
if not "target" in config:
|
| 92 |
+
if config == "__is_first_stage__":
|
| 93 |
+
return None
|
| 94 |
+
elif config == "__is_unconditional__":
|
| 95 |
+
return None
|
| 96 |
+
raise KeyError("Expected key `target` to instantiate.")
|
| 97 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def default_audioldm_config(model_name="audioldm-s-full"):
|
| 101 |
+
basic_config = {
|
| 102 |
+
"wave_file_save_path": "./output",
|
| 103 |
+
"id": {
|
| 104 |
+
"version": "v1",
|
| 105 |
+
"name": "default",
|
| 106 |
+
"root": "/mnt/fast/nobackup/users/hl01486/projects/general_audio_generation/AudioLDM-python/config/default/latent_diffusion.yaml",
|
| 107 |
+
},
|
| 108 |
+
"preprocessing": {
|
| 109 |
+
"audio": {"sampling_rate": 16000, "max_wav_value": 32768},
|
| 110 |
+
"stft": {"filter_length": 1024, "hop_length": 160, "win_length": 1024},
|
| 111 |
+
"mel": {
|
| 112 |
+
"n_mel_channels": 64,
|
| 113 |
+
"mel_fmin": 0,
|
| 114 |
+
"mel_fmax": 8000,
|
| 115 |
+
"freqm": 0,
|
| 116 |
+
"timem": 0,
|
| 117 |
+
"blur": False,
|
| 118 |
+
"mean": -4.63,
|
| 119 |
+
"std": 2.74,
|
| 120 |
+
"target_length": 1024,
|
| 121 |
+
},
|
| 122 |
+
},
|
| 123 |
+
"model": {
|
| 124 |
+
"device": "cuda",
|
| 125 |
+
"target": "audioldm.pipline.LatentDiffusion",
|
| 126 |
+
"params": {
|
| 127 |
+
"base_learning_rate": 5e-06,
|
| 128 |
+
"linear_start": 0.0015,
|
| 129 |
+
"linear_end": 0.0195,
|
| 130 |
+
"num_timesteps_cond": 1,
|
| 131 |
+
"log_every_t": 200,
|
| 132 |
+
"timesteps": 1000,
|
| 133 |
+
"first_stage_key": "fbank",
|
| 134 |
+
"cond_stage_key": "waveform",
|
| 135 |
+
"latent_t_size": 256,
|
| 136 |
+
"latent_f_size": 16,
|
| 137 |
+
"channels": 8,
|
| 138 |
+
"cond_stage_trainable": True,
|
| 139 |
+
"conditioning_key": "film",
|
| 140 |
+
"monitor": "val/loss_simple_ema",
|
| 141 |
+
"scale_by_std": True,
|
| 142 |
+
"unet_config": {
|
| 143 |
+
"target": "audioldm.latent_diffusion.openaimodel.UNetModel",
|
| 144 |
+
"params": {
|
| 145 |
+
"image_size": 64,
|
| 146 |
+
"extra_film_condition_dim": 512,
|
| 147 |
+
"extra_film_use_concat": True,
|
| 148 |
+
"in_channels": 8,
|
| 149 |
+
"out_channels": 8,
|
| 150 |
+
"model_channels": 128,
|
| 151 |
+
"attention_resolutions": [8, 4, 2],
|
| 152 |
+
"num_res_blocks": 2,
|
| 153 |
+
"channel_mult": [1, 2, 3, 5],
|
| 154 |
+
"num_head_channels": 32,
|
| 155 |
+
"use_spatial_transformer": True,
|
| 156 |
+
},
|
| 157 |
+
},
|
| 158 |
+
"first_stage_config": {
|
| 159 |
+
"base_learning_rate": 4.5e-05,
|
| 160 |
+
"target": "audioldm.variational_autoencoder.autoencoder.AutoencoderKL",
|
| 161 |
+
"params": {
|
| 162 |
+
"monitor": "val/rec_loss",
|
| 163 |
+
"image_key": "fbank",
|
| 164 |
+
"subband": 1,
|
| 165 |
+
"embed_dim": 8,
|
| 166 |
+
"time_shuffle": 1,
|
| 167 |
+
"ddconfig": {
|
| 168 |
+
"double_z": True,
|
| 169 |
+
"z_channels": 8,
|
| 170 |
+
"resolution": 256,
|
| 171 |
+
"downsample_time": False,
|
| 172 |
+
"in_channels": 1,
|
| 173 |
+
"out_ch": 1,
|
| 174 |
+
"ch": 128,
|
| 175 |
+
"ch_mult": [1, 2, 4],
|
| 176 |
+
"num_res_blocks": 2,
|
| 177 |
+
"attn_resolutions": [],
|
| 178 |
+
"dropout": 0.0,
|
| 179 |
+
},
|
| 180 |
+
},
|
| 181 |
+
},
|
| 182 |
+
"cond_stage_config": {
|
| 183 |
+
"target": "audioldm.clap.encoders.CLAPAudioEmbeddingClassifierFreev2",
|
| 184 |
+
"params": {
|
| 185 |
+
"key": "waveform",
|
| 186 |
+
"sampling_rate": 16000,
|
| 187 |
+
"embed_mode": "audio",
|
| 188 |
+
"unconditional_prob": 0.1,
|
| 189 |
+
},
|
| 190 |
+
},
|
| 191 |
+
},
|
| 192 |
+
},
|
| 193 |
+
}
|
| 194 |
+
|
| 195 |
+
if("-l-" in model_name):
|
| 196 |
+
basic_config["model"]["params"]["unet_config"]["params"]["model_channels"] = 256
|
| 197 |
+
basic_config["model"]["params"]["unet_config"]["params"]["num_head_channels"] = 64
|
| 198 |
+
elif("-m-" in model_name):
|
| 199 |
+
basic_config["model"]["params"]["unet_config"]["params"]["model_channels"] = 192
|
| 200 |
+
basic_config["model"]["params"]["cond_stage_config"]["params"]["amodel"] = "HTSAT-base" # This model use a larger HTAST
|
| 201 |
+
|
| 202 |
+
return basic_config
|
| 203 |
+
|
| 204 |
+
def get_metadata():
|
| 205 |
+
return {
|
| 206 |
+
"audioldm-s-full": {
|
| 207 |
+
"path": os.path.join(
|
| 208 |
+
CACHE_DIR,
|
| 209 |
+
"audioldm-s-full.ckpt",
|
| 210 |
+
),
|
| 211 |
+
"url": "https://zenodo.org/record/7600541/files/audioldm-s-full?download=1",
|
| 212 |
+
},
|
| 213 |
+
"audioldm-l-full": {
|
| 214 |
+
"path": os.path.join(
|
| 215 |
+
CACHE_DIR,
|
| 216 |
+
"audioldm-l-full.ckpt",
|
| 217 |
+
),
|
| 218 |
+
"url": "https://zenodo.org/record/7698295/files/audioldm-full-l.ckpt?download=1",
|
| 219 |
+
},
|
| 220 |
+
"audioldm-s-full-v2": {
|
| 221 |
+
"path": os.path.join(
|
| 222 |
+
CACHE_DIR,
|
| 223 |
+
"audioldm-s-full-v2.ckpt",
|
| 224 |
+
),
|
| 225 |
+
"url": "https://zenodo.org/record/7698295/files/audioldm-full-s-v2.ckpt?download=1",
|
| 226 |
+
},
|
| 227 |
+
"audioldm-m-text-ft": {
|
| 228 |
+
"path": os.path.join(
|
| 229 |
+
CACHE_DIR,
|
| 230 |
+
"audioldm-m-text-ft.ckpt",
|
| 231 |
+
),
|
| 232 |
+
"url": "https://zenodo.org/record/7813012/files/audioldm-m-text-ft.ckpt?download=1",
|
| 233 |
+
},
|
| 234 |
+
"audioldm-s-text-ft": {
|
| 235 |
+
"path": os.path.join(
|
| 236 |
+
CACHE_DIR,
|
| 237 |
+
"audioldm-s-text-ft.ckpt",
|
| 238 |
+
),
|
| 239 |
+
"url": "https://zenodo.org/record/7813012/files/audioldm-s-text-ft.ckpt?download=1",
|
| 240 |
+
},
|
| 241 |
+
"audioldm-m-full": {
|
| 242 |
+
"path": os.path.join(
|
| 243 |
+
CACHE_DIR,
|
| 244 |
+
"audioldm-m-full.ckpt",
|
| 245 |
+
),
|
| 246 |
+
"url": "https://zenodo.org/record/7813012/files/audioldm-m-full.ckpt?download=1",
|
| 247 |
+
},
|
| 248 |
+
}
|
| 249 |
+
|
| 250 |
+
class MyProgressBar():
|
| 251 |
+
def __init__(self):
|
| 252 |
+
self.pbar = None
|
| 253 |
+
|
| 254 |
+
def __call__(self, block_num, block_size, total_size):
|
| 255 |
+
if not self.pbar:
|
| 256 |
+
self.pbar=progressbar.ProgressBar(maxval=total_size)
|
| 257 |
+
self.pbar.start()
|
| 258 |
+
|
| 259 |
+
downloaded = block_num * block_size
|
| 260 |
+
if downloaded < total_size:
|
| 261 |
+
self.pbar.update(downloaded)
|
| 262 |
+
else:
|
| 263 |
+
self.pbar.finish()
|
| 264 |
+
|
| 265 |
+
def download_checkpoint(checkpoint_name="audioldm-s-full"):
|
| 266 |
+
meta = get_metadata()
|
| 267 |
+
if(checkpoint_name not in meta.keys()):
|
| 268 |
+
print("The model name you provided is not supported. Please use one of the following: ", meta.keys())
|
| 269 |
+
|
| 270 |
+
if not os.path.exists(meta[checkpoint_name]["path"]) or os.path.getsize(meta[checkpoint_name]["path"]) < 2*10**9:
|
| 271 |
+
os.makedirs(os.path.dirname(meta[checkpoint_name]["path"]), exist_ok=True)
|
| 272 |
+
print(f"Downloading the main structure of {checkpoint_name} into {os.path.dirname(meta[checkpoint_name]['path'])}")
|
| 273 |
+
|
| 274 |
+
urllib.request.urlretrieve(meta[checkpoint_name]["url"], meta[checkpoint_name]["path"], MyProgressBar())
|
| 275 |
+
print(
|
| 276 |
+
"Weights downloaded in: {} Size: {}".format(
|
| 277 |
+
meta[checkpoint_name]["path"],
|
| 278 |
+
os.path.getsize(meta[checkpoint_name]["path"]),
|
| 279 |
+
)
|
| 280 |
+
)
|
| 281 |
+
|
audioldm/variational_autoencoder/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .autoencoder import AutoencoderKL
|
audioldm/variational_autoencoder/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (220 Bytes). View file
|
|
|
audioldm/variational_autoencoder/__pycache__/autoencoder.cpython-39.pyc
ADDED
|
Binary file (4.37 kB). View file
|
|
|
audioldm/variational_autoencoder/__pycache__/distributions.cpython-39.pyc
ADDED
|
Binary file (3.78 kB). View file
|
|
|
audioldm/variational_autoencoder/__pycache__/modules.cpython-39.pyc
ADDED
|
Binary file (22.1 kB). View file
|
|
|
audioldm/variational_autoencoder/autoencoder.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from audioldm.latent_diffusion.ema import *
|
| 3 |
+
from audioldm.variational_autoencoder.modules import Encoder, Decoder
|
| 4 |
+
from audioldm.variational_autoencoder.distributions import DiagonalGaussianDistribution
|
| 5 |
+
|
| 6 |
+
from audioldm.hifigan.utilities import get_vocoder, vocoder_infer
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class AutoencoderKL(nn.Module):
|
| 10 |
+
def __init__(
|
| 11 |
+
self,
|
| 12 |
+
ddconfig=None,
|
| 13 |
+
lossconfig=None,
|
| 14 |
+
image_key="fbank",
|
| 15 |
+
embed_dim=None,
|
| 16 |
+
time_shuffle=1,
|
| 17 |
+
subband=1,
|
| 18 |
+
ckpt_path=None,
|
| 19 |
+
reload_from_ckpt=None,
|
| 20 |
+
ignore_keys=[],
|
| 21 |
+
colorize_nlabels=None,
|
| 22 |
+
monitor=None,
|
| 23 |
+
base_learning_rate=1e-5,
|
| 24 |
+
scale_factor=1
|
| 25 |
+
):
|
| 26 |
+
super().__init__()
|
| 27 |
+
|
| 28 |
+
self.encoder = Encoder(**ddconfig)
|
| 29 |
+
self.decoder = Decoder(**ddconfig)
|
| 30 |
+
|
| 31 |
+
self.subband = int(subband)
|
| 32 |
+
|
| 33 |
+
if self.subband > 1:
|
| 34 |
+
print("Use subband decomposition %s" % self.subband)
|
| 35 |
+
|
| 36 |
+
self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
|
| 37 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
| 38 |
+
|
| 39 |
+
self.vocoder = get_vocoder(None, "cpu")
|
| 40 |
+
self.embed_dim = embed_dim
|
| 41 |
+
|
| 42 |
+
if monitor is not None:
|
| 43 |
+
self.monitor = monitor
|
| 44 |
+
|
| 45 |
+
self.time_shuffle = time_shuffle
|
| 46 |
+
self.reload_from_ckpt = reload_from_ckpt
|
| 47 |
+
self.reloaded = False
|
| 48 |
+
self.mean, self.std = None, None
|
| 49 |
+
|
| 50 |
+
self.scale_factor = scale_factor
|
| 51 |
+
|
| 52 |
+
def encode(self, x):
|
| 53 |
+
# x = self.time_shuffle_operation(x)
|
| 54 |
+
x = self.freq_split_subband(x)
|
| 55 |
+
h = self.encoder(x)
|
| 56 |
+
moments = self.quant_conv(h)
|
| 57 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 58 |
+
return posterior
|
| 59 |
+
|
| 60 |
+
def decode(self, z):
|
| 61 |
+
z = self.post_quant_conv(z)
|
| 62 |
+
dec = self.decoder(z)
|
| 63 |
+
dec = self.freq_merge_subband(dec)
|
| 64 |
+
return dec
|
| 65 |
+
|
| 66 |
+
def decode_to_waveform(self, dec):
|
| 67 |
+
dec = dec.squeeze(1).permute(0, 2, 1)
|
| 68 |
+
wav_reconstruction = vocoder_infer(dec, self.vocoder)
|
| 69 |
+
return wav_reconstruction
|
| 70 |
+
|
| 71 |
+
def forward(self, input, sample_posterior=True):
|
| 72 |
+
posterior = self.encode(input)
|
| 73 |
+
if sample_posterior:
|
| 74 |
+
z = posterior.sample()
|
| 75 |
+
else:
|
| 76 |
+
z = posterior.mode()
|
| 77 |
+
|
| 78 |
+
if self.flag_first_run:
|
| 79 |
+
print("Latent size: ", z.size())
|
| 80 |
+
self.flag_first_run = False
|
| 81 |
+
|
| 82 |
+
dec = self.decode(z)
|
| 83 |
+
|
| 84 |
+
return dec, posterior
|
| 85 |
+
|
| 86 |
+
def freq_split_subband(self, fbank):
|
| 87 |
+
if self.subband == 1 or self.image_key != "stft":
|
| 88 |
+
return fbank
|
| 89 |
+
|
| 90 |
+
bs, ch, tstep, fbins = fbank.size()
|
| 91 |
+
|
| 92 |
+
assert fbank.size(-1) % self.subband == 0
|
| 93 |
+
assert ch == 1
|
| 94 |
+
|
| 95 |
+
return (
|
| 96 |
+
fbank.squeeze(1)
|
| 97 |
+
.reshape(bs, tstep, self.subband, fbins // self.subband)
|
| 98 |
+
.permute(0, 2, 1, 3)
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
def freq_merge_subband(self, subband_fbank):
|
| 102 |
+
if self.subband == 1 or self.image_key != "stft":
|
| 103 |
+
return subband_fbank
|
| 104 |
+
assert subband_fbank.size(1) == self.subband # Channel dimension
|
| 105 |
+
bs, sub_ch, tstep, fbins = subband_fbank.size()
|
| 106 |
+
return subband_fbank.permute(0, 2, 1, 3).reshape(bs, tstep, -1).unsqueeze(1)
|
| 107 |
+
|
| 108 |
+
def device(self):
|
| 109 |
+
return next(self.parameters()).device
|
| 110 |
+
|
| 111 |
+
@torch.no_grad()
|
| 112 |
+
def encode_first_stage(self, x):
|
| 113 |
+
return self.encode(x)
|
| 114 |
+
|
| 115 |
+
@torch.no_grad()
|
| 116 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
| 117 |
+
if predict_cids:
|
| 118 |
+
if z.dim() == 4:
|
| 119 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
| 120 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
| 121 |
+
z = rearrange(z, "b h w c -> b c h w").contiguous()
|
| 122 |
+
|
| 123 |
+
z = 1.0 / self.scale_factor * z
|
| 124 |
+
return self.decode(z)
|
| 125 |
+
|
| 126 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
| 127 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
| 128 |
+
z = encoder_posterior.sample()
|
| 129 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
| 130 |
+
z = encoder_posterior
|
| 131 |
+
else:
|
| 132 |
+
raise NotImplementedError(
|
| 133 |
+
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
|
| 134 |
+
)
|
| 135 |
+
return self.scale_factor * z
|
audioldm/variational_autoencoder/distributions.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class AbstractDistribution:
|
| 6 |
+
def sample(self):
|
| 7 |
+
raise NotImplementedError()
|
| 8 |
+
|
| 9 |
+
def mode(self):
|
| 10 |
+
raise NotImplementedError()
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class DiracDistribution(AbstractDistribution):
|
| 14 |
+
def __init__(self, value):
|
| 15 |
+
self.value = value
|
| 16 |
+
|
| 17 |
+
def sample(self):
|
| 18 |
+
return self.value
|
| 19 |
+
|
| 20 |
+
def mode(self):
|
| 21 |
+
return self.value
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class DiagonalGaussianDistribution(object):
|
| 25 |
+
def __init__(self, parameters, deterministic=False):
|
| 26 |
+
self.parameters = parameters
|
| 27 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
| 28 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
| 29 |
+
self.deterministic = deterministic
|
| 30 |
+
self.std = torch.exp(0.5 * self.logvar)
|
| 31 |
+
self.var = torch.exp(self.logvar)
|
| 32 |
+
if self.deterministic:
|
| 33 |
+
self.var = self.std = torch.zeros_like(self.mean).to(
|
| 34 |
+
device=self.parameters.device
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
def sample(self):
|
| 38 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(
|
| 39 |
+
device=self.parameters.device
|
| 40 |
+
)
|
| 41 |
+
return x
|
| 42 |
+
|
| 43 |
+
def kl(self, other=None):
|
| 44 |
+
if self.deterministic:
|
| 45 |
+
return torch.Tensor([0.0])
|
| 46 |
+
else:
|
| 47 |
+
if other is None:
|
| 48 |
+
return 0.5 * torch.mean(
|
| 49 |
+
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
|
| 50 |
+
dim=[1, 2, 3],
|
| 51 |
+
)
|
| 52 |
+
else:
|
| 53 |
+
return 0.5 * torch.mean(
|
| 54 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
| 55 |
+
+ self.var / other.var
|
| 56 |
+
- 1.0
|
| 57 |
+
- self.logvar
|
| 58 |
+
+ other.logvar,
|
| 59 |
+
dim=[1, 2, 3],
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
def nll(self, sample, dims=[1, 2, 3]):
|
| 63 |
+
if self.deterministic:
|
| 64 |
+
return torch.Tensor([0.0])
|
| 65 |
+
logtwopi = np.log(2.0 * np.pi)
|
| 66 |
+
return 0.5 * torch.sum(
|
| 67 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
| 68 |
+
dim=dims,
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
def mode(self):
|
| 72 |
+
return self.mean
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
| 76 |
+
"""
|
| 77 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
| 78 |
+
Compute the KL divergence between two gaussians.
|
| 79 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
| 80 |
+
scalars, among other use cases.
|
| 81 |
+
"""
|
| 82 |
+
tensor = None
|
| 83 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
| 84 |
+
if isinstance(obj, torch.Tensor):
|
| 85 |
+
tensor = obj
|
| 86 |
+
break
|
| 87 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
| 88 |
+
|
| 89 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
| 90 |
+
# Tensors, but it does not work for torch.exp().
|
| 91 |
+
logvar1, logvar2 = [
|
| 92 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
| 93 |
+
for x in (logvar1, logvar2)
|
| 94 |
+
]
|
| 95 |
+
|
| 96 |
+
return 0.5 * (
|
| 97 |
+
-1.0
|
| 98 |
+
+ logvar2
|
| 99 |
+
- logvar1
|
| 100 |
+
+ torch.exp(logvar1 - logvar2)
|
| 101 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
| 102 |
+
)
|
audioldm/variational_autoencoder/modules.py
ADDED
|
@@ -0,0 +1,1066 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pytorch_diffusion + derived encoder decoder
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import numpy as np
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
|
| 8 |
+
from audioldm.utils import instantiate_from_config
|
| 9 |
+
from audioldm.latent_diffusion.attention import LinearAttention
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
| 13 |
+
"""
|
| 14 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
| 15 |
+
From Fairseq.
|
| 16 |
+
Build sinusoidal embeddings.
|
| 17 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
| 18 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
| 19 |
+
"""
|
| 20 |
+
assert len(timesteps.shape) == 1
|
| 21 |
+
|
| 22 |
+
half_dim = embedding_dim // 2
|
| 23 |
+
emb = math.log(10000) / (half_dim - 1)
|
| 24 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
| 25 |
+
emb = emb.to(device=timesteps.device)
|
| 26 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
| 27 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
| 28 |
+
if embedding_dim % 2 == 1: # zero pad
|
| 29 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
| 30 |
+
return emb
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def nonlinearity(x):
|
| 34 |
+
# swish
|
| 35 |
+
return x * torch.sigmoid(x)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def Normalize(in_channels, num_groups=32):
|
| 39 |
+
return torch.nn.GroupNorm(
|
| 40 |
+
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class Upsample(nn.Module):
|
| 45 |
+
def __init__(self, in_channels, with_conv):
|
| 46 |
+
super().__init__()
|
| 47 |
+
self.with_conv = with_conv
|
| 48 |
+
if self.with_conv:
|
| 49 |
+
self.conv = torch.nn.Conv2d(
|
| 50 |
+
in_channels, in_channels, kernel_size=3, stride=1, padding=1
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
def forward(self, x):
|
| 54 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 55 |
+
if self.with_conv:
|
| 56 |
+
x = self.conv(x)
|
| 57 |
+
return x
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class UpsampleTimeStride4(nn.Module):
|
| 61 |
+
def __init__(self, in_channels, with_conv):
|
| 62 |
+
super().__init__()
|
| 63 |
+
self.with_conv = with_conv
|
| 64 |
+
if self.with_conv:
|
| 65 |
+
self.conv = torch.nn.Conv2d(
|
| 66 |
+
in_channels, in_channels, kernel_size=5, stride=1, padding=2
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
def forward(self, x):
|
| 70 |
+
x = torch.nn.functional.interpolate(x, scale_factor=(4.0, 2.0), mode="nearest")
|
| 71 |
+
if self.with_conv:
|
| 72 |
+
x = self.conv(x)
|
| 73 |
+
return x
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class Downsample(nn.Module):
|
| 77 |
+
def __init__(self, in_channels, with_conv):
|
| 78 |
+
super().__init__()
|
| 79 |
+
self.with_conv = with_conv
|
| 80 |
+
if self.with_conv:
|
| 81 |
+
# Do time downsampling here
|
| 82 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 83 |
+
self.conv = torch.nn.Conv2d(
|
| 84 |
+
in_channels, in_channels, kernel_size=3, stride=2, padding=0
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
def forward(self, x):
|
| 88 |
+
if self.with_conv:
|
| 89 |
+
pad = (0, 1, 0, 1)
|
| 90 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
| 91 |
+
x = self.conv(x)
|
| 92 |
+
else:
|
| 93 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
| 94 |
+
return x
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class DownsampleTimeStride4(nn.Module):
|
| 98 |
+
def __init__(self, in_channels, with_conv):
|
| 99 |
+
super().__init__()
|
| 100 |
+
self.with_conv = with_conv
|
| 101 |
+
if self.with_conv:
|
| 102 |
+
# Do time downsampling here
|
| 103 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 104 |
+
self.conv = torch.nn.Conv2d(
|
| 105 |
+
in_channels, in_channels, kernel_size=5, stride=(4, 2), padding=1
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
def forward(self, x):
|
| 109 |
+
if self.with_conv:
|
| 110 |
+
pad = (0, 1, 0, 1)
|
| 111 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
| 112 |
+
x = self.conv(x)
|
| 113 |
+
else:
|
| 114 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=(4, 2), stride=(4, 2))
|
| 115 |
+
return x
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
class ResnetBlock(nn.Module):
|
| 119 |
+
def __init__(
|
| 120 |
+
self,
|
| 121 |
+
*,
|
| 122 |
+
in_channels,
|
| 123 |
+
out_channels=None,
|
| 124 |
+
conv_shortcut=False,
|
| 125 |
+
dropout,
|
| 126 |
+
temb_channels=512,
|
| 127 |
+
):
|
| 128 |
+
super().__init__()
|
| 129 |
+
self.in_channels = in_channels
|
| 130 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 131 |
+
self.out_channels = out_channels
|
| 132 |
+
self.use_conv_shortcut = conv_shortcut
|
| 133 |
+
|
| 134 |
+
self.norm1 = Normalize(in_channels)
|
| 135 |
+
self.conv1 = torch.nn.Conv2d(
|
| 136 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
| 137 |
+
)
|
| 138 |
+
if temb_channels > 0:
|
| 139 |
+
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
| 140 |
+
self.norm2 = Normalize(out_channels)
|
| 141 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 142 |
+
self.conv2 = torch.nn.Conv2d(
|
| 143 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
| 144 |
+
)
|
| 145 |
+
if self.in_channels != self.out_channels:
|
| 146 |
+
if self.use_conv_shortcut:
|
| 147 |
+
self.conv_shortcut = torch.nn.Conv2d(
|
| 148 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
| 149 |
+
)
|
| 150 |
+
else:
|
| 151 |
+
self.nin_shortcut = torch.nn.Conv2d(
|
| 152 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
def forward(self, x, temb):
|
| 156 |
+
h = x
|
| 157 |
+
h = self.norm1(h)
|
| 158 |
+
h = nonlinearity(h)
|
| 159 |
+
h = self.conv1(h)
|
| 160 |
+
|
| 161 |
+
if temb is not None:
|
| 162 |
+
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
| 163 |
+
|
| 164 |
+
h = self.norm2(h)
|
| 165 |
+
h = nonlinearity(h)
|
| 166 |
+
h = self.dropout(h)
|
| 167 |
+
h = self.conv2(h)
|
| 168 |
+
|
| 169 |
+
if self.in_channels != self.out_channels:
|
| 170 |
+
if self.use_conv_shortcut:
|
| 171 |
+
x = self.conv_shortcut(x)
|
| 172 |
+
else:
|
| 173 |
+
x = self.nin_shortcut(x)
|
| 174 |
+
|
| 175 |
+
return x + h
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
class LinAttnBlock(LinearAttention):
|
| 179 |
+
"""to match AttnBlock usage"""
|
| 180 |
+
|
| 181 |
+
def __init__(self, in_channels):
|
| 182 |
+
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
class AttnBlock(nn.Module):
|
| 186 |
+
def __init__(self, in_channels):
|
| 187 |
+
super().__init__()
|
| 188 |
+
self.in_channels = in_channels
|
| 189 |
+
|
| 190 |
+
self.norm = Normalize(in_channels)
|
| 191 |
+
self.q = torch.nn.Conv2d(
|
| 192 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 193 |
+
)
|
| 194 |
+
self.k = torch.nn.Conv2d(
|
| 195 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 196 |
+
)
|
| 197 |
+
self.v = torch.nn.Conv2d(
|
| 198 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 199 |
+
)
|
| 200 |
+
self.proj_out = torch.nn.Conv2d(
|
| 201 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
def forward(self, x):
|
| 205 |
+
h_ = x
|
| 206 |
+
h_ = self.norm(h_)
|
| 207 |
+
q = self.q(h_)
|
| 208 |
+
k = self.k(h_)
|
| 209 |
+
v = self.v(h_)
|
| 210 |
+
|
| 211 |
+
# compute attention
|
| 212 |
+
b, c, h, w = q.shape
|
| 213 |
+
q = q.reshape(b, c, h * w).contiguous()
|
| 214 |
+
q = q.permute(0, 2, 1).contiguous() # b,hw,c
|
| 215 |
+
k = k.reshape(b, c, h * w).contiguous() # b,c,hw
|
| 216 |
+
w_ = torch.bmm(q, k).contiguous() # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
| 217 |
+
w_ = w_ * (int(c) ** (-0.5))
|
| 218 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 219 |
+
|
| 220 |
+
# attend to values
|
| 221 |
+
v = v.reshape(b, c, h * w).contiguous()
|
| 222 |
+
w_ = w_.permute(0, 2, 1).contiguous() # b,hw,hw (first hw of k, second of q)
|
| 223 |
+
h_ = torch.bmm(
|
| 224 |
+
v, w_
|
| 225 |
+
).contiguous() # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
| 226 |
+
h_ = h_.reshape(b, c, h, w).contiguous()
|
| 227 |
+
|
| 228 |
+
h_ = self.proj_out(h_)
|
| 229 |
+
|
| 230 |
+
return x + h_
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def make_attn(in_channels, attn_type="vanilla"):
|
| 234 |
+
assert attn_type in ["vanilla", "linear", "none"], f"attn_type {attn_type} unknown"
|
| 235 |
+
# print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
| 236 |
+
if attn_type == "vanilla":
|
| 237 |
+
return AttnBlock(in_channels)
|
| 238 |
+
elif attn_type == "none":
|
| 239 |
+
return nn.Identity(in_channels)
|
| 240 |
+
else:
|
| 241 |
+
return LinAttnBlock(in_channels)
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
class Model(nn.Module):
|
| 245 |
+
def __init__(
|
| 246 |
+
self,
|
| 247 |
+
*,
|
| 248 |
+
ch,
|
| 249 |
+
out_ch,
|
| 250 |
+
ch_mult=(1, 2, 4, 8),
|
| 251 |
+
num_res_blocks,
|
| 252 |
+
attn_resolutions,
|
| 253 |
+
dropout=0.0,
|
| 254 |
+
resamp_with_conv=True,
|
| 255 |
+
in_channels,
|
| 256 |
+
resolution,
|
| 257 |
+
use_timestep=True,
|
| 258 |
+
use_linear_attn=False,
|
| 259 |
+
attn_type="vanilla",
|
| 260 |
+
):
|
| 261 |
+
super().__init__()
|
| 262 |
+
if use_linear_attn:
|
| 263 |
+
attn_type = "linear"
|
| 264 |
+
self.ch = ch
|
| 265 |
+
self.temb_ch = self.ch * 4
|
| 266 |
+
self.num_resolutions = len(ch_mult)
|
| 267 |
+
self.num_res_blocks = num_res_blocks
|
| 268 |
+
self.resolution = resolution
|
| 269 |
+
self.in_channels = in_channels
|
| 270 |
+
|
| 271 |
+
self.use_timestep = use_timestep
|
| 272 |
+
if self.use_timestep:
|
| 273 |
+
# timestep embedding
|
| 274 |
+
self.temb = nn.Module()
|
| 275 |
+
self.temb.dense = nn.ModuleList(
|
| 276 |
+
[
|
| 277 |
+
torch.nn.Linear(self.ch, self.temb_ch),
|
| 278 |
+
torch.nn.Linear(self.temb_ch, self.temb_ch),
|
| 279 |
+
]
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
# downsampling
|
| 283 |
+
self.conv_in = torch.nn.Conv2d(
|
| 284 |
+
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
curr_res = resolution
|
| 288 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
| 289 |
+
self.down = nn.ModuleList()
|
| 290 |
+
for i_level in range(self.num_resolutions):
|
| 291 |
+
block = nn.ModuleList()
|
| 292 |
+
attn = nn.ModuleList()
|
| 293 |
+
block_in = ch * in_ch_mult[i_level]
|
| 294 |
+
block_out = ch * ch_mult[i_level]
|
| 295 |
+
for i_block in range(self.num_res_blocks):
|
| 296 |
+
block.append(
|
| 297 |
+
ResnetBlock(
|
| 298 |
+
in_channels=block_in,
|
| 299 |
+
out_channels=block_out,
|
| 300 |
+
temb_channels=self.temb_ch,
|
| 301 |
+
dropout=dropout,
|
| 302 |
+
)
|
| 303 |
+
)
|
| 304 |
+
block_in = block_out
|
| 305 |
+
if curr_res in attn_resolutions:
|
| 306 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 307 |
+
down = nn.Module()
|
| 308 |
+
down.block = block
|
| 309 |
+
down.attn = attn
|
| 310 |
+
if i_level != self.num_resolutions - 1:
|
| 311 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 312 |
+
curr_res = curr_res // 2
|
| 313 |
+
self.down.append(down)
|
| 314 |
+
|
| 315 |
+
# middle
|
| 316 |
+
self.mid = nn.Module()
|
| 317 |
+
self.mid.block_1 = ResnetBlock(
|
| 318 |
+
in_channels=block_in,
|
| 319 |
+
out_channels=block_in,
|
| 320 |
+
temb_channels=self.temb_ch,
|
| 321 |
+
dropout=dropout,
|
| 322 |
+
)
|
| 323 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
| 324 |
+
self.mid.block_2 = ResnetBlock(
|
| 325 |
+
in_channels=block_in,
|
| 326 |
+
out_channels=block_in,
|
| 327 |
+
temb_channels=self.temb_ch,
|
| 328 |
+
dropout=dropout,
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
# upsampling
|
| 332 |
+
self.up = nn.ModuleList()
|
| 333 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 334 |
+
block = nn.ModuleList()
|
| 335 |
+
attn = nn.ModuleList()
|
| 336 |
+
block_out = ch * ch_mult[i_level]
|
| 337 |
+
skip_in = ch * ch_mult[i_level]
|
| 338 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 339 |
+
if i_block == self.num_res_blocks:
|
| 340 |
+
skip_in = ch * in_ch_mult[i_level]
|
| 341 |
+
block.append(
|
| 342 |
+
ResnetBlock(
|
| 343 |
+
in_channels=block_in + skip_in,
|
| 344 |
+
out_channels=block_out,
|
| 345 |
+
temb_channels=self.temb_ch,
|
| 346 |
+
dropout=dropout,
|
| 347 |
+
)
|
| 348 |
+
)
|
| 349 |
+
block_in = block_out
|
| 350 |
+
if curr_res in attn_resolutions:
|
| 351 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 352 |
+
up = nn.Module()
|
| 353 |
+
up.block = block
|
| 354 |
+
up.attn = attn
|
| 355 |
+
if i_level != 0:
|
| 356 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
| 357 |
+
curr_res = curr_res * 2
|
| 358 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 359 |
+
|
| 360 |
+
# end
|
| 361 |
+
self.norm_out = Normalize(block_in)
|
| 362 |
+
self.conv_out = torch.nn.Conv2d(
|
| 363 |
+
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
def forward(self, x, t=None, context=None):
|
| 367 |
+
# assert x.shape[2] == x.shape[3] == self.resolution
|
| 368 |
+
if context is not None:
|
| 369 |
+
# assume aligned context, cat along channel axis
|
| 370 |
+
x = torch.cat((x, context), dim=1)
|
| 371 |
+
if self.use_timestep:
|
| 372 |
+
# timestep embedding
|
| 373 |
+
assert t is not None
|
| 374 |
+
temb = get_timestep_embedding(t, self.ch)
|
| 375 |
+
temb = self.temb.dense[0](temb)
|
| 376 |
+
temb = nonlinearity(temb)
|
| 377 |
+
temb = self.temb.dense[1](temb)
|
| 378 |
+
else:
|
| 379 |
+
temb = None
|
| 380 |
+
|
| 381 |
+
# downsampling
|
| 382 |
+
hs = [self.conv_in(x)]
|
| 383 |
+
for i_level in range(self.num_resolutions):
|
| 384 |
+
for i_block in range(self.num_res_blocks):
|
| 385 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 386 |
+
if len(self.down[i_level].attn) > 0:
|
| 387 |
+
h = self.down[i_level].attn[i_block](h)
|
| 388 |
+
hs.append(h)
|
| 389 |
+
if i_level != self.num_resolutions - 1:
|
| 390 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 391 |
+
|
| 392 |
+
# middle
|
| 393 |
+
h = hs[-1]
|
| 394 |
+
h = self.mid.block_1(h, temb)
|
| 395 |
+
h = self.mid.attn_1(h)
|
| 396 |
+
h = self.mid.block_2(h, temb)
|
| 397 |
+
|
| 398 |
+
# upsampling
|
| 399 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 400 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 401 |
+
h = self.up[i_level].block[i_block](
|
| 402 |
+
torch.cat([h, hs.pop()], dim=1), temb
|
| 403 |
+
)
|
| 404 |
+
if len(self.up[i_level].attn) > 0:
|
| 405 |
+
h = self.up[i_level].attn[i_block](h)
|
| 406 |
+
if i_level != 0:
|
| 407 |
+
h = self.up[i_level].upsample(h)
|
| 408 |
+
|
| 409 |
+
# end
|
| 410 |
+
h = self.norm_out(h)
|
| 411 |
+
h = nonlinearity(h)
|
| 412 |
+
h = self.conv_out(h)
|
| 413 |
+
return h
|
| 414 |
+
|
| 415 |
+
def get_last_layer(self):
|
| 416 |
+
return self.conv_out.weight
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
class Encoder(nn.Module):
|
| 420 |
+
def __init__(
|
| 421 |
+
self,
|
| 422 |
+
*,
|
| 423 |
+
ch,
|
| 424 |
+
out_ch,
|
| 425 |
+
ch_mult=(1, 2, 4, 8),
|
| 426 |
+
num_res_blocks,
|
| 427 |
+
attn_resolutions,
|
| 428 |
+
dropout=0.0,
|
| 429 |
+
resamp_with_conv=True,
|
| 430 |
+
in_channels,
|
| 431 |
+
resolution,
|
| 432 |
+
z_channels,
|
| 433 |
+
double_z=True,
|
| 434 |
+
use_linear_attn=False,
|
| 435 |
+
attn_type="vanilla",
|
| 436 |
+
downsample_time_stride4_levels=[],
|
| 437 |
+
**ignore_kwargs,
|
| 438 |
+
):
|
| 439 |
+
super().__init__()
|
| 440 |
+
if use_linear_attn:
|
| 441 |
+
attn_type = "linear"
|
| 442 |
+
self.ch = ch
|
| 443 |
+
self.temb_ch = 0
|
| 444 |
+
self.num_resolutions = len(ch_mult)
|
| 445 |
+
self.num_res_blocks = num_res_blocks
|
| 446 |
+
self.resolution = resolution
|
| 447 |
+
self.in_channels = in_channels
|
| 448 |
+
self.downsample_time_stride4_levels = downsample_time_stride4_levels
|
| 449 |
+
|
| 450 |
+
if len(self.downsample_time_stride4_levels) > 0:
|
| 451 |
+
assert max(self.downsample_time_stride4_levels) < self.num_resolutions, (
|
| 452 |
+
"The level to perform downsample 4 operation need to be smaller than the total resolution number %s"
|
| 453 |
+
% str(self.num_resolutions)
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
# downsampling
|
| 457 |
+
self.conv_in = torch.nn.Conv2d(
|
| 458 |
+
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
curr_res = resolution
|
| 462 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
| 463 |
+
self.in_ch_mult = in_ch_mult
|
| 464 |
+
self.down = nn.ModuleList()
|
| 465 |
+
for i_level in range(self.num_resolutions):
|
| 466 |
+
block = nn.ModuleList()
|
| 467 |
+
attn = nn.ModuleList()
|
| 468 |
+
block_in = ch * in_ch_mult[i_level]
|
| 469 |
+
block_out = ch * ch_mult[i_level]
|
| 470 |
+
for i_block in range(self.num_res_blocks):
|
| 471 |
+
block.append(
|
| 472 |
+
ResnetBlock(
|
| 473 |
+
in_channels=block_in,
|
| 474 |
+
out_channels=block_out,
|
| 475 |
+
temb_channels=self.temb_ch,
|
| 476 |
+
dropout=dropout,
|
| 477 |
+
)
|
| 478 |
+
)
|
| 479 |
+
block_in = block_out
|
| 480 |
+
if curr_res in attn_resolutions:
|
| 481 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 482 |
+
down = nn.Module()
|
| 483 |
+
down.block = block
|
| 484 |
+
down.attn = attn
|
| 485 |
+
if i_level != self.num_resolutions - 1:
|
| 486 |
+
if i_level in self.downsample_time_stride4_levels:
|
| 487 |
+
down.downsample = DownsampleTimeStride4(block_in, resamp_with_conv)
|
| 488 |
+
else:
|
| 489 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 490 |
+
curr_res = curr_res // 2
|
| 491 |
+
self.down.append(down)
|
| 492 |
+
|
| 493 |
+
# middle
|
| 494 |
+
self.mid = nn.Module()
|
| 495 |
+
self.mid.block_1 = ResnetBlock(
|
| 496 |
+
in_channels=block_in,
|
| 497 |
+
out_channels=block_in,
|
| 498 |
+
temb_channels=self.temb_ch,
|
| 499 |
+
dropout=dropout,
|
| 500 |
+
)
|
| 501 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
| 502 |
+
self.mid.block_2 = ResnetBlock(
|
| 503 |
+
in_channels=block_in,
|
| 504 |
+
out_channels=block_in,
|
| 505 |
+
temb_channels=self.temb_ch,
|
| 506 |
+
dropout=dropout,
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
# end
|
| 510 |
+
self.norm_out = Normalize(block_in)
|
| 511 |
+
self.conv_out = torch.nn.Conv2d(
|
| 512 |
+
block_in,
|
| 513 |
+
2 * z_channels if double_z else z_channels,
|
| 514 |
+
kernel_size=3,
|
| 515 |
+
stride=1,
|
| 516 |
+
padding=1,
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
def forward(self, x):
|
| 520 |
+
# timestep embedding
|
| 521 |
+
temb = None
|
| 522 |
+
# downsampling
|
| 523 |
+
hs = [self.conv_in(x)]
|
| 524 |
+
for i_level in range(self.num_resolutions):
|
| 525 |
+
for i_block in range(self.num_res_blocks):
|
| 526 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 527 |
+
if len(self.down[i_level].attn) > 0:
|
| 528 |
+
h = self.down[i_level].attn[i_block](h)
|
| 529 |
+
hs.append(h)
|
| 530 |
+
if i_level != self.num_resolutions - 1:
|
| 531 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 532 |
+
|
| 533 |
+
# middle
|
| 534 |
+
h = hs[-1]
|
| 535 |
+
h = self.mid.block_1(h, temb)
|
| 536 |
+
h = self.mid.attn_1(h)
|
| 537 |
+
h = self.mid.block_2(h, temb)
|
| 538 |
+
|
| 539 |
+
# end
|
| 540 |
+
h = self.norm_out(h)
|
| 541 |
+
h = nonlinearity(h)
|
| 542 |
+
h = self.conv_out(h)
|
| 543 |
+
return h
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
class Decoder(nn.Module):
|
| 547 |
+
def __init__(
|
| 548 |
+
self,
|
| 549 |
+
*,
|
| 550 |
+
ch,
|
| 551 |
+
out_ch,
|
| 552 |
+
ch_mult=(1, 2, 4, 8),
|
| 553 |
+
num_res_blocks,
|
| 554 |
+
attn_resolutions,
|
| 555 |
+
dropout=0.0,
|
| 556 |
+
resamp_with_conv=True,
|
| 557 |
+
in_channels,
|
| 558 |
+
resolution,
|
| 559 |
+
z_channels,
|
| 560 |
+
give_pre_end=False,
|
| 561 |
+
tanh_out=False,
|
| 562 |
+
use_linear_attn=False,
|
| 563 |
+
downsample_time_stride4_levels=[],
|
| 564 |
+
attn_type="vanilla",
|
| 565 |
+
**ignorekwargs,
|
| 566 |
+
):
|
| 567 |
+
super().__init__()
|
| 568 |
+
if use_linear_attn:
|
| 569 |
+
attn_type = "linear"
|
| 570 |
+
self.ch = ch
|
| 571 |
+
self.temb_ch = 0
|
| 572 |
+
self.num_resolutions = len(ch_mult)
|
| 573 |
+
self.num_res_blocks = num_res_blocks
|
| 574 |
+
self.resolution = resolution
|
| 575 |
+
self.in_channels = in_channels
|
| 576 |
+
self.give_pre_end = give_pre_end
|
| 577 |
+
self.tanh_out = tanh_out
|
| 578 |
+
self.downsample_time_stride4_levels = downsample_time_stride4_levels
|
| 579 |
+
|
| 580 |
+
if len(self.downsample_time_stride4_levels) > 0:
|
| 581 |
+
assert max(self.downsample_time_stride4_levels) < self.num_resolutions, (
|
| 582 |
+
"The level to perform downsample 4 operation need to be smaller than the total resolution number %s"
|
| 583 |
+
% str(self.num_resolutions)
|
| 584 |
+
)
|
| 585 |
+
|
| 586 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
| 587 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
| 588 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
| 589 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
| 590 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
| 591 |
+
# print("Working with z of shape {} = {} dimensions.".format(
|
| 592 |
+
# self.z_shape, np.prod(self.z_shape)))
|
| 593 |
+
|
| 594 |
+
# z to block_in
|
| 595 |
+
self.conv_in = torch.nn.Conv2d(
|
| 596 |
+
z_channels, block_in, kernel_size=3, stride=1, padding=1
|
| 597 |
+
)
|
| 598 |
+
|
| 599 |
+
# middle
|
| 600 |
+
self.mid = nn.Module()
|
| 601 |
+
self.mid.block_1 = ResnetBlock(
|
| 602 |
+
in_channels=block_in,
|
| 603 |
+
out_channels=block_in,
|
| 604 |
+
temb_channels=self.temb_ch,
|
| 605 |
+
dropout=dropout,
|
| 606 |
+
)
|
| 607 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
| 608 |
+
self.mid.block_2 = ResnetBlock(
|
| 609 |
+
in_channels=block_in,
|
| 610 |
+
out_channels=block_in,
|
| 611 |
+
temb_channels=self.temb_ch,
|
| 612 |
+
dropout=dropout,
|
| 613 |
+
)
|
| 614 |
+
|
| 615 |
+
# upsampling
|
| 616 |
+
self.up = nn.ModuleList()
|
| 617 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 618 |
+
block = nn.ModuleList()
|
| 619 |
+
attn = nn.ModuleList()
|
| 620 |
+
block_out = ch * ch_mult[i_level]
|
| 621 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 622 |
+
block.append(
|
| 623 |
+
ResnetBlock(
|
| 624 |
+
in_channels=block_in,
|
| 625 |
+
out_channels=block_out,
|
| 626 |
+
temb_channels=self.temb_ch,
|
| 627 |
+
dropout=dropout,
|
| 628 |
+
)
|
| 629 |
+
)
|
| 630 |
+
block_in = block_out
|
| 631 |
+
if curr_res in attn_resolutions:
|
| 632 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 633 |
+
up = nn.Module()
|
| 634 |
+
up.block = block
|
| 635 |
+
up.attn = attn
|
| 636 |
+
if i_level != 0:
|
| 637 |
+
if i_level - 1 in self.downsample_time_stride4_levels:
|
| 638 |
+
up.upsample = UpsampleTimeStride4(block_in, resamp_with_conv)
|
| 639 |
+
else:
|
| 640 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
| 641 |
+
curr_res = curr_res * 2
|
| 642 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 643 |
+
|
| 644 |
+
# end
|
| 645 |
+
self.norm_out = Normalize(block_in)
|
| 646 |
+
self.conv_out = torch.nn.Conv2d(
|
| 647 |
+
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
| 648 |
+
)
|
| 649 |
+
|
| 650 |
+
def forward(self, z):
|
| 651 |
+
# assert z.shape[1:] == self.z_shape[1:]
|
| 652 |
+
self.last_z_shape = z.shape
|
| 653 |
+
|
| 654 |
+
# timestep embedding
|
| 655 |
+
temb = None
|
| 656 |
+
|
| 657 |
+
# z to block_in
|
| 658 |
+
h = self.conv_in(z)
|
| 659 |
+
|
| 660 |
+
# middle
|
| 661 |
+
h = self.mid.block_1(h, temb)
|
| 662 |
+
h = self.mid.attn_1(h)
|
| 663 |
+
h = self.mid.block_2(h, temb)
|
| 664 |
+
|
| 665 |
+
# upsampling
|
| 666 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 667 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 668 |
+
h = self.up[i_level].block[i_block](h, temb)
|
| 669 |
+
if len(self.up[i_level].attn) > 0:
|
| 670 |
+
h = self.up[i_level].attn[i_block](h)
|
| 671 |
+
if i_level != 0:
|
| 672 |
+
h = self.up[i_level].upsample(h)
|
| 673 |
+
|
| 674 |
+
# end
|
| 675 |
+
if self.give_pre_end:
|
| 676 |
+
return h
|
| 677 |
+
|
| 678 |
+
h = self.norm_out(h)
|
| 679 |
+
h = nonlinearity(h)
|
| 680 |
+
h = self.conv_out(h)
|
| 681 |
+
if self.tanh_out:
|
| 682 |
+
h = torch.tanh(h)
|
| 683 |
+
return h
|
| 684 |
+
|
| 685 |
+
|
| 686 |
+
class SimpleDecoder(nn.Module):
|
| 687 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
| 688 |
+
super().__init__()
|
| 689 |
+
self.model = nn.ModuleList(
|
| 690 |
+
[
|
| 691 |
+
nn.Conv2d(in_channels, in_channels, 1),
|
| 692 |
+
ResnetBlock(
|
| 693 |
+
in_channels=in_channels,
|
| 694 |
+
out_channels=2 * in_channels,
|
| 695 |
+
temb_channels=0,
|
| 696 |
+
dropout=0.0,
|
| 697 |
+
),
|
| 698 |
+
ResnetBlock(
|
| 699 |
+
in_channels=2 * in_channels,
|
| 700 |
+
out_channels=4 * in_channels,
|
| 701 |
+
temb_channels=0,
|
| 702 |
+
dropout=0.0,
|
| 703 |
+
),
|
| 704 |
+
ResnetBlock(
|
| 705 |
+
in_channels=4 * in_channels,
|
| 706 |
+
out_channels=2 * in_channels,
|
| 707 |
+
temb_channels=0,
|
| 708 |
+
dropout=0.0,
|
| 709 |
+
),
|
| 710 |
+
nn.Conv2d(2 * in_channels, in_channels, 1),
|
| 711 |
+
Upsample(in_channels, with_conv=True),
|
| 712 |
+
]
|
| 713 |
+
)
|
| 714 |
+
# end
|
| 715 |
+
self.norm_out = Normalize(in_channels)
|
| 716 |
+
self.conv_out = torch.nn.Conv2d(
|
| 717 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
| 718 |
+
)
|
| 719 |
+
|
| 720 |
+
def forward(self, x):
|
| 721 |
+
for i, layer in enumerate(self.model):
|
| 722 |
+
if i in [1, 2, 3]:
|
| 723 |
+
x = layer(x, None)
|
| 724 |
+
else:
|
| 725 |
+
x = layer(x)
|
| 726 |
+
|
| 727 |
+
h = self.norm_out(x)
|
| 728 |
+
h = nonlinearity(h)
|
| 729 |
+
x = self.conv_out(h)
|
| 730 |
+
return x
|
| 731 |
+
|
| 732 |
+
|
| 733 |
+
class UpsampleDecoder(nn.Module):
|
| 734 |
+
def __init__(
|
| 735 |
+
self,
|
| 736 |
+
in_channels,
|
| 737 |
+
out_channels,
|
| 738 |
+
ch,
|
| 739 |
+
num_res_blocks,
|
| 740 |
+
resolution,
|
| 741 |
+
ch_mult=(2, 2),
|
| 742 |
+
dropout=0.0,
|
| 743 |
+
):
|
| 744 |
+
super().__init__()
|
| 745 |
+
# upsampling
|
| 746 |
+
self.temb_ch = 0
|
| 747 |
+
self.num_resolutions = len(ch_mult)
|
| 748 |
+
self.num_res_blocks = num_res_blocks
|
| 749 |
+
block_in = in_channels
|
| 750 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
| 751 |
+
self.res_blocks = nn.ModuleList()
|
| 752 |
+
self.upsample_blocks = nn.ModuleList()
|
| 753 |
+
for i_level in range(self.num_resolutions):
|
| 754 |
+
res_block = []
|
| 755 |
+
block_out = ch * ch_mult[i_level]
|
| 756 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 757 |
+
res_block.append(
|
| 758 |
+
ResnetBlock(
|
| 759 |
+
in_channels=block_in,
|
| 760 |
+
out_channels=block_out,
|
| 761 |
+
temb_channels=self.temb_ch,
|
| 762 |
+
dropout=dropout,
|
| 763 |
+
)
|
| 764 |
+
)
|
| 765 |
+
block_in = block_out
|
| 766 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
| 767 |
+
if i_level != self.num_resolutions - 1:
|
| 768 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
| 769 |
+
curr_res = curr_res * 2
|
| 770 |
+
|
| 771 |
+
# end
|
| 772 |
+
self.norm_out = Normalize(block_in)
|
| 773 |
+
self.conv_out = torch.nn.Conv2d(
|
| 774 |
+
block_in, out_channels, kernel_size=3, stride=1, padding=1
|
| 775 |
+
)
|
| 776 |
+
|
| 777 |
+
def forward(self, x):
|
| 778 |
+
# upsampling
|
| 779 |
+
h = x
|
| 780 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
| 781 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 782 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
| 783 |
+
if i_level != self.num_resolutions - 1:
|
| 784 |
+
h = self.upsample_blocks[k](h)
|
| 785 |
+
h = self.norm_out(h)
|
| 786 |
+
h = nonlinearity(h)
|
| 787 |
+
h = self.conv_out(h)
|
| 788 |
+
return h
|
| 789 |
+
|
| 790 |
+
|
| 791 |
+
class LatentRescaler(nn.Module):
|
| 792 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
| 793 |
+
super().__init__()
|
| 794 |
+
# residual block, interpolate, residual block
|
| 795 |
+
self.factor = factor
|
| 796 |
+
self.conv_in = nn.Conv2d(
|
| 797 |
+
in_channels, mid_channels, kernel_size=3, stride=1, padding=1
|
| 798 |
+
)
|
| 799 |
+
self.res_block1 = nn.ModuleList(
|
| 800 |
+
[
|
| 801 |
+
ResnetBlock(
|
| 802 |
+
in_channels=mid_channels,
|
| 803 |
+
out_channels=mid_channels,
|
| 804 |
+
temb_channels=0,
|
| 805 |
+
dropout=0.0,
|
| 806 |
+
)
|
| 807 |
+
for _ in range(depth)
|
| 808 |
+
]
|
| 809 |
+
)
|
| 810 |
+
self.attn = AttnBlock(mid_channels)
|
| 811 |
+
self.res_block2 = nn.ModuleList(
|
| 812 |
+
[
|
| 813 |
+
ResnetBlock(
|
| 814 |
+
in_channels=mid_channels,
|
| 815 |
+
out_channels=mid_channels,
|
| 816 |
+
temb_channels=0,
|
| 817 |
+
dropout=0.0,
|
| 818 |
+
)
|
| 819 |
+
for _ in range(depth)
|
| 820 |
+
]
|
| 821 |
+
)
|
| 822 |
+
|
| 823 |
+
self.conv_out = nn.Conv2d(
|
| 824 |
+
mid_channels,
|
| 825 |
+
out_channels,
|
| 826 |
+
kernel_size=1,
|
| 827 |
+
)
|
| 828 |
+
|
| 829 |
+
def forward(self, x):
|
| 830 |
+
x = self.conv_in(x)
|
| 831 |
+
for block in self.res_block1:
|
| 832 |
+
x = block(x, None)
|
| 833 |
+
x = torch.nn.functional.interpolate(
|
| 834 |
+
x,
|
| 835 |
+
size=(
|
| 836 |
+
int(round(x.shape[2] * self.factor)),
|
| 837 |
+
int(round(x.shape[3] * self.factor)),
|
| 838 |
+
),
|
| 839 |
+
)
|
| 840 |
+
x = self.attn(x).contiguous()
|
| 841 |
+
for block in self.res_block2:
|
| 842 |
+
x = block(x, None)
|
| 843 |
+
x = self.conv_out(x)
|
| 844 |
+
return x
|
| 845 |
+
|
| 846 |
+
|
| 847 |
+
class MergedRescaleEncoder(nn.Module):
|
| 848 |
+
def __init__(
|
| 849 |
+
self,
|
| 850 |
+
in_channels,
|
| 851 |
+
ch,
|
| 852 |
+
resolution,
|
| 853 |
+
out_ch,
|
| 854 |
+
num_res_blocks,
|
| 855 |
+
attn_resolutions,
|
| 856 |
+
dropout=0.0,
|
| 857 |
+
resamp_with_conv=True,
|
| 858 |
+
ch_mult=(1, 2, 4, 8),
|
| 859 |
+
rescale_factor=1.0,
|
| 860 |
+
rescale_module_depth=1,
|
| 861 |
+
):
|
| 862 |
+
super().__init__()
|
| 863 |
+
intermediate_chn = ch * ch_mult[-1]
|
| 864 |
+
self.encoder = Encoder(
|
| 865 |
+
in_channels=in_channels,
|
| 866 |
+
num_res_blocks=num_res_blocks,
|
| 867 |
+
ch=ch,
|
| 868 |
+
ch_mult=ch_mult,
|
| 869 |
+
z_channels=intermediate_chn,
|
| 870 |
+
double_z=False,
|
| 871 |
+
resolution=resolution,
|
| 872 |
+
attn_resolutions=attn_resolutions,
|
| 873 |
+
dropout=dropout,
|
| 874 |
+
resamp_with_conv=resamp_with_conv,
|
| 875 |
+
out_ch=None,
|
| 876 |
+
)
|
| 877 |
+
self.rescaler = LatentRescaler(
|
| 878 |
+
factor=rescale_factor,
|
| 879 |
+
in_channels=intermediate_chn,
|
| 880 |
+
mid_channels=intermediate_chn,
|
| 881 |
+
out_channels=out_ch,
|
| 882 |
+
depth=rescale_module_depth,
|
| 883 |
+
)
|
| 884 |
+
|
| 885 |
+
def forward(self, x):
|
| 886 |
+
x = self.encoder(x)
|
| 887 |
+
x = self.rescaler(x)
|
| 888 |
+
return x
|
| 889 |
+
|
| 890 |
+
|
| 891 |
+
class MergedRescaleDecoder(nn.Module):
|
| 892 |
+
def __init__(
|
| 893 |
+
self,
|
| 894 |
+
z_channels,
|
| 895 |
+
out_ch,
|
| 896 |
+
resolution,
|
| 897 |
+
num_res_blocks,
|
| 898 |
+
attn_resolutions,
|
| 899 |
+
ch,
|
| 900 |
+
ch_mult=(1, 2, 4, 8),
|
| 901 |
+
dropout=0.0,
|
| 902 |
+
resamp_with_conv=True,
|
| 903 |
+
rescale_factor=1.0,
|
| 904 |
+
rescale_module_depth=1,
|
| 905 |
+
):
|
| 906 |
+
super().__init__()
|
| 907 |
+
tmp_chn = z_channels * ch_mult[-1]
|
| 908 |
+
self.decoder = Decoder(
|
| 909 |
+
out_ch=out_ch,
|
| 910 |
+
z_channels=tmp_chn,
|
| 911 |
+
attn_resolutions=attn_resolutions,
|
| 912 |
+
dropout=dropout,
|
| 913 |
+
resamp_with_conv=resamp_with_conv,
|
| 914 |
+
in_channels=None,
|
| 915 |
+
num_res_blocks=num_res_blocks,
|
| 916 |
+
ch_mult=ch_mult,
|
| 917 |
+
resolution=resolution,
|
| 918 |
+
ch=ch,
|
| 919 |
+
)
|
| 920 |
+
self.rescaler = LatentRescaler(
|
| 921 |
+
factor=rescale_factor,
|
| 922 |
+
in_channels=z_channels,
|
| 923 |
+
mid_channels=tmp_chn,
|
| 924 |
+
out_channels=tmp_chn,
|
| 925 |
+
depth=rescale_module_depth,
|
| 926 |
+
)
|
| 927 |
+
|
| 928 |
+
def forward(self, x):
|
| 929 |
+
x = self.rescaler(x)
|
| 930 |
+
x = self.decoder(x)
|
| 931 |
+
return x
|
| 932 |
+
|
| 933 |
+
|
| 934 |
+
class Upsampler(nn.Module):
|
| 935 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
| 936 |
+
super().__init__()
|
| 937 |
+
assert out_size >= in_size
|
| 938 |
+
num_blocks = int(np.log2(out_size // in_size)) + 1
|
| 939 |
+
factor_up = 1.0 + (out_size % in_size)
|
| 940 |
+
print(
|
| 941 |
+
f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}"
|
| 942 |
+
)
|
| 943 |
+
self.rescaler = LatentRescaler(
|
| 944 |
+
factor=factor_up,
|
| 945 |
+
in_channels=in_channels,
|
| 946 |
+
mid_channels=2 * in_channels,
|
| 947 |
+
out_channels=in_channels,
|
| 948 |
+
)
|
| 949 |
+
self.decoder = Decoder(
|
| 950 |
+
out_ch=out_channels,
|
| 951 |
+
resolution=out_size,
|
| 952 |
+
z_channels=in_channels,
|
| 953 |
+
num_res_blocks=2,
|
| 954 |
+
attn_resolutions=[],
|
| 955 |
+
in_channels=None,
|
| 956 |
+
ch=in_channels,
|
| 957 |
+
ch_mult=[ch_mult for _ in range(num_blocks)],
|
| 958 |
+
)
|
| 959 |
+
|
| 960 |
+
def forward(self, x):
|
| 961 |
+
x = self.rescaler(x)
|
| 962 |
+
x = self.decoder(x)
|
| 963 |
+
return x
|
| 964 |
+
|
| 965 |
+
|
| 966 |
+
class Resize(nn.Module):
|
| 967 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
| 968 |
+
super().__init__()
|
| 969 |
+
self.with_conv = learned
|
| 970 |
+
self.mode = mode
|
| 971 |
+
if self.with_conv:
|
| 972 |
+
print(
|
| 973 |
+
f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode"
|
| 974 |
+
)
|
| 975 |
+
raise NotImplementedError()
|
| 976 |
+
assert in_channels is not None
|
| 977 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 978 |
+
self.conv = torch.nn.Conv2d(
|
| 979 |
+
in_channels, in_channels, kernel_size=4, stride=2, padding=1
|
| 980 |
+
)
|
| 981 |
+
|
| 982 |
+
def forward(self, x, scale_factor=1.0):
|
| 983 |
+
if scale_factor == 1.0:
|
| 984 |
+
return x
|
| 985 |
+
else:
|
| 986 |
+
x = torch.nn.functional.interpolate(
|
| 987 |
+
x, mode=self.mode, align_corners=False, scale_factor=scale_factor
|
| 988 |
+
)
|
| 989 |
+
return x
|
| 990 |
+
|
| 991 |
+
|
| 992 |
+
class FirstStagePostProcessor(nn.Module):
|
| 993 |
+
def __init__(
|
| 994 |
+
self,
|
| 995 |
+
ch_mult: list,
|
| 996 |
+
in_channels,
|
| 997 |
+
pretrained_model: nn.Module = None,
|
| 998 |
+
reshape=False,
|
| 999 |
+
n_channels=None,
|
| 1000 |
+
dropout=0.0,
|
| 1001 |
+
pretrained_config=None,
|
| 1002 |
+
):
|
| 1003 |
+
super().__init__()
|
| 1004 |
+
if pretrained_config is None:
|
| 1005 |
+
assert (
|
| 1006 |
+
pretrained_model is not None
|
| 1007 |
+
), 'Either "pretrained_model" or "pretrained_config" must not be None'
|
| 1008 |
+
self.pretrained_model = pretrained_model
|
| 1009 |
+
else:
|
| 1010 |
+
assert (
|
| 1011 |
+
pretrained_config is not None
|
| 1012 |
+
), 'Either "pretrained_model" or "pretrained_config" must not be None'
|
| 1013 |
+
self.instantiate_pretrained(pretrained_config)
|
| 1014 |
+
|
| 1015 |
+
self.do_reshape = reshape
|
| 1016 |
+
|
| 1017 |
+
if n_channels is None:
|
| 1018 |
+
n_channels = self.pretrained_model.encoder.ch
|
| 1019 |
+
|
| 1020 |
+
self.proj_norm = Normalize(in_channels, num_groups=in_channels // 2)
|
| 1021 |
+
self.proj = nn.Conv2d(
|
| 1022 |
+
in_channels, n_channels, kernel_size=3, stride=1, padding=1
|
| 1023 |
+
)
|
| 1024 |
+
|
| 1025 |
+
blocks = []
|
| 1026 |
+
downs = []
|
| 1027 |
+
ch_in = n_channels
|
| 1028 |
+
for m in ch_mult:
|
| 1029 |
+
blocks.append(
|
| 1030 |
+
ResnetBlock(
|
| 1031 |
+
in_channels=ch_in, out_channels=m * n_channels, dropout=dropout
|
| 1032 |
+
)
|
| 1033 |
+
)
|
| 1034 |
+
ch_in = m * n_channels
|
| 1035 |
+
downs.append(Downsample(ch_in, with_conv=False))
|
| 1036 |
+
|
| 1037 |
+
self.model = nn.ModuleList(blocks)
|
| 1038 |
+
self.downsampler = nn.ModuleList(downs)
|
| 1039 |
+
|
| 1040 |
+
def instantiate_pretrained(self, config):
|
| 1041 |
+
model = instantiate_from_config(config)
|
| 1042 |
+
self.pretrained_model = model.eval()
|
| 1043 |
+
# self.pretrained_model.train = False
|
| 1044 |
+
for param in self.pretrained_model.parameters():
|
| 1045 |
+
param.requires_grad = False
|
| 1046 |
+
|
| 1047 |
+
@torch.no_grad()
|
| 1048 |
+
def encode_with_pretrained(self, x):
|
| 1049 |
+
c = self.pretrained_model.encode(x)
|
| 1050 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
| 1051 |
+
c = c.mode()
|
| 1052 |
+
return c
|
| 1053 |
+
|
| 1054 |
+
def forward(self, x):
|
| 1055 |
+
z_fs = self.encode_with_pretrained(x)
|
| 1056 |
+
z = self.proj_norm(z_fs)
|
| 1057 |
+
z = self.proj(z)
|
| 1058 |
+
z = nonlinearity(z)
|
| 1059 |
+
|
| 1060 |
+
for submodel, downmodel in zip(self.model, self.downsampler):
|
| 1061 |
+
z = submodel(z, temb=None)
|
| 1062 |
+
z = downmodel(z)
|
| 1063 |
+
|
| 1064 |
+
if self.do_reshape:
|
| 1065 |
+
z = rearrange(z, "b c h w -> b (h w) c")
|
| 1066 |
+
return z
|
diffusers/CITATION.cff
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
cff-version: 1.2.0
|
| 2 |
+
title: 'Diffusers: State-of-the-art diffusion models'
|
| 3 |
+
message: >-
|
| 4 |
+
If you use this software, please cite it using the
|
| 5 |
+
metadata from this file.
|
| 6 |
+
type: software
|
| 7 |
+
authors:
|
| 8 |
+
- given-names: Patrick
|
| 9 |
+
family-names: von Platen
|
| 10 |
+
- given-names: Suraj
|
| 11 |
+
family-names: Patil
|
| 12 |
+
- given-names: Anton
|
| 13 |
+
family-names: Lozhkov
|
| 14 |
+
- given-names: Pedro
|
| 15 |
+
family-names: Cuenca
|
| 16 |
+
- given-names: Nathan
|
| 17 |
+
family-names: Lambert
|
| 18 |
+
- given-names: Kashif
|
| 19 |
+
family-names: Rasul
|
| 20 |
+
- given-names: Mishig
|
| 21 |
+
family-names: Davaadorj
|
| 22 |
+
- given-names: Thomas
|
| 23 |
+
family-names: Wolf
|
| 24 |
+
repository-code: 'https://github.com/huggingface/diffusers'
|
| 25 |
+
abstract: >-
|
| 26 |
+
Diffusers provides pretrained diffusion models across
|
| 27 |
+
multiple modalities, such as vision and audio, and serves
|
| 28 |
+
as a modular toolbox for inference and training of
|
| 29 |
+
diffusion models.
|
| 30 |
+
keywords:
|
| 31 |
+
- deep-learning
|
| 32 |
+
- pytorch
|
| 33 |
+
- image-generation
|
| 34 |
+
- diffusion
|
| 35 |
+
- text2image
|
| 36 |
+
- image2image
|
| 37 |
+
- score-based-generative-modeling
|
| 38 |
+
- stable-diffusion
|
| 39 |
+
license: Apache-2.0
|
| 40 |
+
version: 0.12.1
|
diffusers/CODE_OF_CONDUCT.md
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# Contributor Covenant Code of Conduct
|
| 3 |
+
|
| 4 |
+
## Our Pledge
|
| 5 |
+
|
| 6 |
+
We as members, contributors, and leaders pledge to make participation in our
|
| 7 |
+
community a harassment-free experience for everyone, regardless of age, body
|
| 8 |
+
size, visible or invisible disability, ethnicity, sex characteristics, gender
|
| 9 |
+
identity and expression, level of experience, education, socio-economic status,
|
| 10 |
+
nationality, personal appearance, race, religion, or sexual identity
|
| 11 |
+
and orientation.
|
| 12 |
+
|
| 13 |
+
We pledge to act and interact in ways that contribute to an open, welcoming,
|
| 14 |
+
diverse, inclusive, and healthy community.
|
| 15 |
+
|
| 16 |
+
## Our Standards
|
| 17 |
+
|
| 18 |
+
Examples of behavior that contributes to a positive environment for our
|
| 19 |
+
community include:
|
| 20 |
+
|
| 21 |
+
* Demonstrating empathy and kindness toward other people
|
| 22 |
+
* Being respectful of differing opinions, viewpoints, and experiences
|
| 23 |
+
* Giving and gracefully accepting constructive feedback
|
| 24 |
+
* Accepting responsibility and apologizing to those affected by our mistakes,
|
| 25 |
+
and learning from the experience
|
| 26 |
+
* Focusing on what is best not just for us as individuals, but for the
|
| 27 |
+
overall diffusers community
|
| 28 |
+
|
| 29 |
+
Examples of unacceptable behavior include:
|
| 30 |
+
|
| 31 |
+
* The use of sexualized language or imagery, and sexual attention or
|
| 32 |
+
advances of any kind
|
| 33 |
+
* Trolling, insulting or derogatory comments, and personal or political attacks
|
| 34 |
+
* Public or private harassment
|
| 35 |
+
* Publishing others' private information, such as a physical or email
|
| 36 |
+
address, without their explicit permission
|
| 37 |
+
* Spamming issues or PRs with links to projects unrelated to this library
|
| 38 |
+
* Other conduct which could reasonably be considered inappropriate in a
|
| 39 |
+
professional setting
|
| 40 |
+
|
| 41 |
+
## Enforcement Responsibilities
|
| 42 |
+
|
| 43 |
+
Community leaders are responsible for clarifying and enforcing our standards of
|
| 44 |
+
acceptable behavior and will take appropriate and fair corrective action in
|
| 45 |
+
response to any behavior that they deem inappropriate, threatening, offensive,
|
| 46 |
+
or harmful.
|
| 47 |
+
|
| 48 |
+
Community leaders have the right and responsibility to remove, edit, or reject
|
| 49 |
+
comments, commits, code, wiki edits, issues, and other contributions that are
|
| 50 |
+
not aligned to this Code of Conduct, and will communicate reasons for moderation
|
| 51 |
+
decisions when appropriate.
|
| 52 |
+
|
| 53 |
+
## Scope
|
| 54 |
+
|
| 55 |
+
This Code of Conduct applies within all community spaces, and also applies when
|
| 56 |
+
an individual is officially representing the community in public spaces.
|
| 57 |
+
Examples of representing our community include using an official e-mail address,
|
| 58 |
+
posting via an official social media account, or acting as an appointed
|
| 59 |
+
representative at an online or offline event.
|
| 60 |
+
|
| 61 |
+
## Enforcement
|
| 62 |
+
|
| 63 |
+
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
| 64 |
+
reported to the community leaders responsible for enforcement at
|
| 65 | |
| 66 |
+
All complaints will be reviewed and investigated promptly and fairly.
|
| 67 |
+
|
| 68 |
+
All community leaders are obligated to respect the privacy and security of the
|
| 69 |
+
reporter of any incident.
|
| 70 |
+
|
| 71 |
+
## Enforcement Guidelines
|
| 72 |
+
|
| 73 |
+
Community leaders will follow these Community Impact Guidelines in determining
|
| 74 |
+
the consequences for any action they deem in violation of this Code of Conduct:
|
| 75 |
+
|
| 76 |
+
### 1. Correction
|
| 77 |
+
|
| 78 |
+
**Community Impact**: Use of inappropriate language or other behavior deemed
|
| 79 |
+
unprofessional or unwelcome in the community.
|
| 80 |
+
|
| 81 |
+
**Consequence**: A private, written warning from community leaders, providing
|
| 82 |
+
clarity around the nature of the violation and an explanation of why the
|
| 83 |
+
behavior was inappropriate. A public apology may be requested.
|
| 84 |
+
|
| 85 |
+
### 2. Warning
|
| 86 |
+
|
| 87 |
+
**Community Impact**: A violation through a single incident or series
|
| 88 |
+
of actions.
|
| 89 |
+
|
| 90 |
+
**Consequence**: A warning with consequences for continued behavior. No
|
| 91 |
+
interaction with the people involved, including unsolicited interaction with
|
| 92 |
+
those enforcing the Code of Conduct, for a specified period of time. This
|
| 93 |
+
includes avoiding interactions in community spaces as well as external channels
|
| 94 |
+
like social media. Violating these terms may lead to a temporary or
|
| 95 |
+
permanent ban.
|
| 96 |
+
|
| 97 |
+
### 3. Temporary Ban
|
| 98 |
+
|
| 99 |
+
**Community Impact**: A serious violation of community standards, including
|
| 100 |
+
sustained inappropriate behavior.
|
| 101 |
+
|
| 102 |
+
**Consequence**: A temporary ban from any sort of interaction or public
|
| 103 |
+
communication with the community for a specified period of time. No public or
|
| 104 |
+
private interaction with the people involved, including unsolicited interaction
|
| 105 |
+
with those enforcing the Code of Conduct, is allowed during this period.
|
| 106 |
+
Violating these terms may lead to a permanent ban.
|
| 107 |
+
|
| 108 |
+
### 4. Permanent Ban
|
| 109 |
+
|
| 110 |
+
**Community Impact**: Demonstrating a pattern of violation of community
|
| 111 |
+
standards, including sustained inappropriate behavior, harassment of an
|
| 112 |
+
individual, or aggression toward or disparagement of classes of individuals.
|
| 113 |
+
|
| 114 |
+
**Consequence**: A permanent ban from any sort of public interaction within
|
| 115 |
+
the community.
|
| 116 |
+
|
| 117 |
+
## Attribution
|
| 118 |
+
|
| 119 |
+
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
|
| 120 |
+
version 2.0, available at
|
| 121 |
+
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
|
| 122 |
+
|
| 123 |
+
Community Impact Guidelines were inspired by [Mozilla's code of conduct
|
| 124 |
+
enforcement ladder](https://github.com/mozilla/diversity).
|
| 125 |
+
|
| 126 |
+
[homepage]: https://www.contributor-covenant.org
|
| 127 |
+
|
| 128 |
+
For answers to common questions about this code of conduct, see the FAQ at
|
| 129 |
+
https://www.contributor-covenant.org/faq. Translations are available at
|
| 130 |
+
https://www.contributor-covenant.org/translations.
|