File size: 21,476 Bytes
54dd079 8b55878 2691648 8b55878 54dd079 8b55878 54dd079 8b55878 2691648 8b55878 54dd079 8b55878 54dd079 2691648 54dd079 8b55878 2691648 54dd079 8b55878 2691648 54dd079 8b55878 2691648 54dd079 8b55878 2691648 8b55878 2691648 54dd079 be64bc2 2691648 54dd079 8b55878 54dd079 8b55878 625933e 8b55878 625933e 8b55878 54dd079 2691648 be64bc2 2691648 be64bc2 54dd079 8b55878 54dd079 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
import gradio as gr
import os
import tempfile
import logging
from podcastfy.client import generate_podcast
from dotenv import load_dotenv
# Configure logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# 定义语音选项
VOICE_OPTIONS = [
{"id": "3b55b3d84d2f453a98d8ca9bb24182d6", "name": "邓紫琪"},
{"id": "fa756c4628b94b7394d1822e5848cf59", "name": "杨幂"},
{"id": "08f18a5692544543a6ca5fdd1eaa328c", "name": "宋雨琦"},
{"id": "f2ed19ca0ea246bf9cbc6382be00e4fc", "name": "王志文"},
{"id": "738d0cc1a3e9430a9de2b544a466a7fc", "name": "雷军"},
{"id": "1512d05841734931bf905d0520c272b1", "name": "周杰伦"},
{"id": "e4642e5edccd4d9ab61a69e82d4f8a14", "name": "蔡徐坤"},
{"id": "e04a3dc718864c999ef7db3035764aa8", "name": "刘华强"},
{"id": "7c66db6e457c4d53b1fe428a8c547953", "name": "郭德纲"},
{"id": "f6f293aabfe24e46aff0fc309c233d31", "name": "曹操"},
{"id": "22e8eb5f1f424c749592cd9db3927368", "name": "李云龙"},
{"id": "5e680ebc2eeb4f78a2224f2e1003b8c6", "name": "刘备"},
{"id": "zh-HK-HiuGaaiNeural", "name": "曉佳(粤语女声)"},
{"id": "zh-HK-HiuMaanNeural", "name": "曉曼(粤语女声)"},
{"id": "zh-HK-WanLungNeural", "name": "雲龍(粤语男声)"},
{"id": "zh-CN-XiaoxiaoNeural", "name": "晓晓(活泼女声)"},
{"id": "zh-CN-XiaoyiNeural", "name": "晓伊(女声)"},
{"id": "zh-CN-YunjianNeural", "name": "云健(解说男声)"},
{"id": "zh-CN-YunxiNeural", "name": "云希(阳光男声)"},
{"id": "zh-CN-YunxiaNeural", "name": "云夏(少年男声)"},
{"id": "zh-CN-YunyangNeural", "name": "云扬(专业男声)"},
{"id": "zh-CN-liaoning-XiaobeiNeural", "name": "晓贝(辽宁女声)"},
{"id": "zh-TW-HsiaoChenNeural", "name": "曉臻(湾湾女声)"},
{"id": "zh-TW-YunJheNeural", "name": "雲哲(湾湾男声)"},
{"id": "zh-TW-HsiaoYuNeural", "name": "曉雨(湾湾女声)"},
{"id": "zh-CN-shaanxi-XiaoniNeural", "name": "晓妮(陕西女声)"},
{"id": "alloy", "name": "alloy(用于官方)"},
{"id": "echo", "name": "echo"},
{"id": "fable", "name": "fable"},
{"id": "onyx", "name": "onyx"},
{"id": "nova", "name": "nova"},
{"id": "shimmer", "name": "shimmer"},
]
def get_api_key(key_name, ui_value):
return ui_value if ui_value else os.getenv(key_name)
def process_inputs(
text_input,
urls_input,
pdf_files,
image_files,
gemini_key,
openai_key,
openai_base_url, # 新增参数
elevenlabs_key,
word_count,
conversation_style,
roles_person1,
roles_person2,
dialogue_structure,
podcast_name,
podcast_tagline,
output_language,
tts_model,
creativity_level,
user_instructions,
engagement_techniques,
tts_openai_question,
tts_openai_answer,
ending_message,
):
try:
logger.info("Starting podcast generation process")
# API key handling
logger.debug("Setting API keys")
os.environ["GEMINI_API_KEY"] = get_api_key("GEMINI_API_KEY", gemini_key)
if tts_model == "openai":
logger.debug("Setting OpenAI API key")
if not openai_key and not os.getenv("OPENAI_API_KEY"):
raise ValueError("OpenAI API key is required when using OpenAI TTS model")
os.environ["OPENAI_API_KEY"] = get_api_key("OPENAI_API_KEY", openai_key)
if openai_base_url:
os.environ["OPENAI_API_BASE"] = openai_base_url
if tts_model == "elevenlabs":
logger.debug("Setting ElevenLabs API key")
if not elevenlabs_key and not os.getenv("ELEVENLABS_API_KEY"):
raise ValueError("ElevenLabs API key is required when using ElevenLabs TTS model")
os.environ["ELEVENLABS_API_KEY"] = get_api_key("ELEVENLABS_API_KEY", elevenlabs_key)
# Process URLs
urls = [url.strip() for url in urls_input.split('\n') if url.strip()]
logger.debug(f"Processed URLs: {urls}")
temp_files = []
temp_dirs = []
# Handle PDF files
if pdf_files is not None and len(pdf_files) > 0:
logger.info(f"Processing {len(pdf_files)} PDF files")
pdf_temp_dir = tempfile.mkdtemp()
temp_dirs.append(pdf_temp_dir)
for i, pdf_file in enumerate(pdf_files):
pdf_path = os.path.join(pdf_temp_dir, f"input_pdf_{i}.pdf")
temp_files.append(pdf_path)
with open(pdf_path, 'wb') as f:
f.write(pdf_file)
urls.append(pdf_path)
logger.debug(f"Saved PDF {i} to {pdf_path}")
# Handle image files
image_paths = []
if image_files is not None and len(image_files) > 0:
logger.info(f"Processing {len(image_files)} image files")
img_temp_dir = tempfile.mkdtemp()
temp_dirs.append(img_temp_dir)
for i, img_file in enumerate(image_files):
# Get file extension from the original name in the file tuple
original_name = img_file.orig_name if hasattr(img_file, 'orig_name') else f"image_{i}.jpg"
extension = original_name.split('.')[-1]
logger.debug(f"Processing image file {i}: {original_name}")
img_path = os.path.join(img_temp_dir, f"input_image_{i}.{extension}")
temp_files.append(img_path)
try:
# Write the bytes directly to the file
with open(img_path, 'wb') as f:
if isinstance(img_file, (tuple, list)):
f.write(img_file[1]) # Write the bytes content
else:
f.write(img_file) # Write the bytes directly
image_paths.append(img_path)
logger.debug(f"Saved image {i} to {img_path}")
except Exception as e:
logger.error(f"Error saving image {i}: {str(e)}")
raise
# Prepare conversation config
logger.debug("Preparing conversation config")
conversation_config = {
"word_count": word_count,
"conversation_style": conversation_style.split(','),
"roles_person1": roles_person1,
"roles_person2": roles_person2,
"dialogue_structure": dialogue_structure.split(','),
"podcast_name": podcast_name,
"podcast_tagline": podcast_tagline,
"output_language": output_language,
"creativity": creativity_level,
"user_instructions": user_instructions,
"engagement_techniques": engagement_techniques,
'text_to_speech': {
'ending_message': ending_message,
'openai': {
'default_voices': {
'question': tts_openai_question,
'answer': tts_openai_answer
},
"model": "tts-1",
},
},
}
# Generate podcast
logger.info("Calling generate_podcast function")
logger.debug(f"URLs: {urls}")
logger.debug(f"Image paths: {image_paths}")
logger.debug(f"Text input present: {'Yes' if text_input else 'No'}")
audio_file = generate_podcast(
urls=urls if urls else None,
text=text_input if text_input else None,
image_paths=image_paths if image_paths else None,
tts_model=tts_model,
conversation_config=conversation_config,
)
logger.info("Podcast generation completed")
# Cleanup
logger.debug("Cleaning up temporary files")
for file_path in temp_files:
if os.path.exists(file_path):
os.unlink(file_path)
logger.debug(f"Removed temp file: {file_path}")
for dir_path in temp_dirs:
if os.path.exists(dir_path):
os.rmdir(dir_path)
logger.debug(f"Removed temp directory: {dir_path}")
return audio_file
except Exception as e:
logger.error(f"Error in process_inputs: {str(e)}", exc_info=True)
# Cleanup on error
for file_path in temp_files:
if os.path.exists(file_path):
os.unlink(file_path)
for dir_path in temp_dirs:
if os.path.exists(dir_path):
os.rmdir(dir_path)
return str(e)
# Create Gradio interface with updated theme
with gr.Blocks(
title="AI播客plus",
theme=gr.themes.Base(
primary_hue="blue",
secondary_hue="slate",
neutral_hue="slate"
),
css="""
/* Move toggle arrow to left side */
.gr-accordion {
--accordion-arrow-size: 1.5em;
}
.gr-accordion > .label-wrap {
flex-direction: row !important;
justify-content: flex-start !important;
gap: 1em;
}
.gr-accordion > .label-wrap > .icon {
order: -1;
}
"""
) as demo:
with gr.Tab("默认环境变量已设置 Gemini、OpenAI API Key "):
# API Keys Section
with gr.Row():
gr.Markdown(
"""
<h2 style='color: #2196F3; margin-bottom: 10px; padding: 10px 0;'>
🔑 API Keys
</h2>
""",
elem_classes=["section-header"]
)
theme_btn = gr.Button("🌓", scale=0, min_width=0)
with gr.Accordion("配置 API Keys", open=False):
gemini_key = gr.Textbox(
label="Gemini API Key",
type="password",
value="",
info="必须的"
)
openai_key = gr.Textbox(
label="OpenAI API Key",
type="password",
value="",
info="只有在使用OpenAI文本转语音模型的情况下才需要此项"
)
openai_base_url = gr.Textbox(
label="OpenAI Base URL",
value="",
info="可选,留空使用默认URL:https://api.openai.com/v1"
)
elevenlabs_key = gr.Textbox(
label="ElevenLabs API Key",
type="password",
value="",
info="建议使用ElevenLabs TTS模型,仅在使用该模型时才需要此项"
)
# Content Input Section
gr.Markdown(
"""
<h2 style='color: #2196F3; margin-bottom: 10px; padding: 10px 0;'>
📝 输入内容
</h2>
""",
elem_classes=["section-header"]
)
with gr.Accordion("设置输入内容", open=False):
with gr.Group():
text_input = gr.Textbox(
label="文本输入",
placeholder="在此输入或粘贴文字...",
lines=3
)
urls_input = gr.Textbox(
label="URLs",
placeholder="请逐行输入网址,支持网站和YouTube视频链接.",
lines=3
)
# Place PDF and Image uploads side by side
with gr.Row():
with gr.Column():
pdf_files = gr.Files( # Changed from gr.File to gr.Files
label="上传 PDFs", # Updated label
file_types=[".pdf"],
type="binary"
)
gr.Markdown("*上传一个或多个PDF文件来创建播客*", elem_classes=["file-info"])
with gr.Column():
image_files = gr.Files(
label="上传图片",
file_types=["image"],
type="binary"
)
gr.Markdown("*上传一个或多个图片文件来创建播客*", elem_classes=["file-info"])
# Customization Section
gr.Markdown(
"""
<h2 style='color: #2196F3; margin-bottom: 10px; padding: 10px 0;'>
⚙️ 自定义选项
</h2>
""",
elem_classes=["section-header"]
)
with gr.Accordion("自定义选项", open=False):
# Basic Settings
gr.Markdown(
"""
<h3 style='color: #1976D2; margin: 15px 0 10px 0;'>
📊 基本设置
</h3>
""",
)
word_count = gr.Slider(
minimum=500,
maximum=5000,
value=2000,
step=100,
label="字数统计",
info="目标字数(用于生成内容)学术辩论:3000。讲故事:1000"
)
conversation_style = gr.Textbox(
label="对话风格",
value="engaging,fast-paced,enthusiastic",
info="用于对话的风格列表(以逗号分隔)默认:生动活泼,节奏明快,热情洋溢。学术辩论: formal,analytical,critical;讲故事: narrative,suspenseful,descriptive"
)
# Roles and Structure
gr.Markdown(
"""
<h3 style='color: #1976D2; margin: 15px 0 10px 0;'>
👥 角色设定与结构安排
</h3>
""",
)
roles_person1 = gr.Textbox(
label="第一位发言者的角色",
value="main summarizer",
info="在对话中,第一个说话人扮演的角色,默认:主要负责总结的人。学术辩论: thesis presenter;讲故事: storyteller"
)
roles_person2 = gr.Textbox(
label="第二位发言者的角色",
value="questioner/clarifier",
info="在对话中,第二个说话人所扮演的角色或承担的任务,默认:提问者/释疑者。学术辩论: counterargument provider;讲故事: audience participator"
)
dialogue_structure = gr.Textbox(
label="对话结构",
value="Introduction,Main Content Summary,Conclusion",
info="对话结构的各个部分(用逗号隔开)默认:引言,主要内容的概括,总结。学术辩论: Opening Statements,Thesis Presentation,Counterarguments,Rebuttals,Closing Remarks;讲故事: Scene Setting,Character Introduction,Rising Action,Climax,Resolution"
)
engagement_techniques = gr.Textbox(
label="沟通技巧",
value="rhetorical questions,anecdotes,analogies,humor",
info="一些沟通和交流方式(用逗号隔开)默认:各种修辞、生动例子、形象比喻、诙谐幽默。学术辩论: socratic questioning,historical references,thought experiments;讲故事: cliffhangers,vivid imagery,audience prompts"
)
creativity_level = gr.Slider(
minimum=0,
maximum=1,
value=0.7,
step=0.1,
label="创意等级",
info="调节生成对话的创意程度(0 为注重事实,1 为更具创意)。学术辩论:0。讲故事:0.9"
)
# Podcast Identity
gr.Markdown(
"""
<h3 style='color: #1976D2; margin: 15px 0 10px 0;'>
🎙️ 播客特色
</h3>
""",
)
podcast_name = gr.Textbox(
label="播客名",
value="猛然间",
info="播客的名字"
)
podcast_tagline = gr.Textbox(
label="播客宣传语",
value="猛然回首,太匆匆",
info="播客的宣传语或副标题"
)
output_language = gr.Textbox(
label="输出语言",
value="Chinese",
info="播客使用的语言"
)
# longform = gr.Checkbox(
# label="长篇模式",
# value=False,
# info="启用长篇内容生成模式"
# )
# Voice Settings
gr.Markdown(
"""
<h3 style='color: #1976D2; margin: 15px 0 10px 0;'>
🗣️ 语音设置
</h3>
""",
)
ending_message = gr.Textbox(
label="结束语",
value="撒由那拉!",
info="结束语"
)
tts_model = gr.Radio(
choices=["openai", "elevenlabs", "edge"],
value="openai",
label="文本转语音模型",
info="选择语音合成模型 (edge 免费但音质较差, 其他模型音质更好但需申请 API keys)"
)
tts_openai_question = gr.Dropdown(
choices={voice["name"]: voice["id"] for voice in VOICE_OPTIONS},
value=VOICE_OPTIONS[27]["id"], # 默认选择选项
label="OpenAI TTS 主持人",
info="选择OpenAI TTS 主持人角色语音"
)
tts_openai_answer = gr.Dropdown(
choices={voice["name"]: voice["id"] for voice in VOICE_OPTIONS},
value=VOICE_OPTIONS[31]["id"], # 默认选择选项
label="OpenAI TTS 嘉宾",
info="选择OpenAI TTS 嘉宾角色语音"
)
# Advanced Settings
gr.Markdown(
"""
<h3 style='color: #1976D2; margin: 15px 0 10px 0;'>
🔧 高级选项
</h3>
""",
)
user_instructions = gr.Textbox(
label="个性化指令",
value="",
lines=2,
placeholder="在此处添加你希望AI遵循的具体指令,以控制对话的走向和内容...",
info="一些额外的指令,用来帮助AI更好地理解你想要聊天的内容和方向"
)
# api_key_label = gr.Textbox(
# label="自定义基于云的 LLM",
# value="GEMINI_API_KEY",
# info="可选,默认使用 Gemini,如使用 OPENAI,上面填入 'OPENAI_API_KEY' 并保证设置好环境变量且设置好下面的模型"
# )
# llm_model_name = gr.Textbox(
# label="设置好对应自定义基于云的 LLM 模型",
# value="gemini-1.5-pro-latest",
# info="可选,配合上面的参数,默认是 Gemini 的 gemini-1.5-pro-latest,默认 OPENAI 可支持模型 api.168369.xyz/v1/models 获取"
# )
# Output Section
gr.Markdown(
"""
<h2 style='color: #2196F3; margin-bottom: 10px; padding: 10px 0;'>
🎵 生成结果
</h2>
""",
elem_classes=["section-header"]
)
with gr.Group():
generate_btn = gr.Button("🎙️ 生成播客", variant="primary")
audio_output = gr.Audio(
type="filepath",
label="生成的播客"
)
# Handle generation
generate_btn.click(
process_inputs,
inputs=[
text_input, urls_input, pdf_files, image_files,
gemini_key, openai_key, openai_base_url,
elevenlabs_key,
word_count, conversation_style,
roles_person1, roles_person2,
dialogue_structure, podcast_name,
podcast_tagline, output_language, tts_model,
creativity_level, user_instructions,
engagement_techniques, tts_openai_question, tts_openai_answer, ending_message,
],
outputs=audio_output
)
# Add theme toggle functionality
theme_btn.click(
None,
None,
None,
js="""
function() {
document.querySelector('body').classList.toggle('dark');
return [];
}
"""
)
if __name__ == "__main__":
demo.queue().launch(share=True)
|