import gradio as gr import os import tempfile import logging from podcastfy.client import generate_podcast from dotenv import load_dotenv # Configure logging logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) # Load environment variables load_dotenv() def get_api_key(key_name, ui_value): return ui_value if ui_value else os.getenv(key_name) def process_inputs( text_input, urls_input, pdf_files, image_files, gemini_key, openai_key, openai_base_url, # 新增参数 elevenlabs_key, word_count, conversation_style, roles_person1, roles_person2, dialogue_structure, podcast_name, podcast_tagline, output_language, tts_model, creativity_level, user_instructions, api_key_label, llm_model_name, longform, ): try: logger.info("Starting podcast generation process") # API key handling logger.debug("Setting API keys") os.environ["GEMINI_API_KEY"] = get_api_key("GEMINI_API_KEY", gemini_key) if tts_model == "openai": logger.debug("Setting OpenAI API key") if not openai_key and not os.getenv("OPENAI_API_KEY"): raise ValueError("OpenAI API key is required when using OpenAI TTS model") os.environ["OPENAI_API_KEY"] = get_api_key("OPENAI_API_KEY", openai_key) if openai_base_url: os.environ["OPENAI_API_BASE"] = openai_base_url if tts_model == "elevenlabs": logger.debug("Setting ElevenLabs API key") if not elevenlabs_key and not os.getenv("ELEVENLABS_API_KEY"): raise ValueError("ElevenLabs API key is required when using ElevenLabs TTS model") os.environ["ELEVENLABS_API_KEY"] = get_api_key("ELEVENLABS_API_KEY", elevenlabs_key) # Process URLs urls = [url.strip() for url in urls_input.split('\n') if url.strip()] logger.debug(f"Processed URLs: {urls}") temp_files = [] temp_dirs = [] # Handle PDF files if pdf_files is not None and len(pdf_files) > 0: logger.info(f"Processing {len(pdf_files)} PDF files") pdf_temp_dir = tempfile.mkdtemp() temp_dirs.append(pdf_temp_dir) for i, pdf_file in enumerate(pdf_files): pdf_path = os.path.join(pdf_temp_dir, f"input_pdf_{i}.pdf") temp_files.append(pdf_path) with open(pdf_path, 'wb') as f: f.write(pdf_file) urls.append(pdf_path) logger.debug(f"Saved PDF {i} to {pdf_path}") # Handle image files image_paths = [] if image_files is not None and len(image_files) > 0: logger.info(f"Processing {len(image_files)} image files") img_temp_dir = tempfile.mkdtemp() temp_dirs.append(img_temp_dir) for i, img_file in enumerate(image_files): # Get file extension from the original name in the file tuple original_name = img_file.orig_name if hasattr(img_file, 'orig_name') else f"image_{i}.jpg" extension = original_name.split('.')[-1] logger.debug(f"Processing image file {i}: {original_name}") img_path = os.path.join(img_temp_dir, f"input_image_{i}.{extension}") temp_files.append(img_path) try: # Write the bytes directly to the file with open(img_path, 'wb') as f: if isinstance(img_file, (tuple, list)): f.write(img_file[1]) # Write the bytes content else: f.write(img_file) # Write the bytes directly image_paths.append(img_path) logger.debug(f"Saved image {i} to {img_path}") except Exception as e: logger.error(f"Error saving image {i}: {str(e)}") raise # Prepare conversation config logger.debug("Preparing conversation config") conversation_config = { "word_count": word_count, "conversation_style": conversation_style.split(','), "roles_person1": roles_person1, "roles_person2": roles_person2, "dialogue_structure": dialogue_structure.split(','), "podcast_name": podcast_name, "podcast_tagline": podcast_tagline, "output_language": output_language, "creativity": creativity_level, "user_instructions": user_instructions, "api_key_label": api_key_label, "llm_model_name": llm_model_name, "longform": longform, } # Generate podcast logger.info("Calling generate_podcast function") logger.debug(f"URLs: {urls}") logger.debug(f"Image paths: {image_paths}") logger.debug(f"Text input present: {'Yes' if text_input else 'No'}") audio_file = generate_podcast( urls=urls if urls else None, text=text_input if text_input else None, image_paths=image_paths if image_paths else None, tts_model=tts_model, conversation_config=conversation_config ) logger.info("Podcast generation completed") # Cleanup logger.debug("Cleaning up temporary files") for file_path in temp_files: if os.path.exists(file_path): os.unlink(file_path) logger.debug(f"Removed temp file: {file_path}") for dir_path in temp_dirs: if os.path.exists(dir_path): os.rmdir(dir_path) logger.debug(f"Removed temp directory: {dir_path}") return audio_file except Exception as e: logger.error(f"Error in process_inputs: {str(e)}", exc_info=True) # Cleanup on error for file_path in temp_files: if os.path.exists(file_path): os.unlink(file_path) for dir_path in temp_dirs: if os.path.exists(dir_path): os.rmdir(dir_path) return str(e) # Create Gradio interface with updated theme with gr.Blocks( title="AI播客plus", theme=gr.themes.Base( primary_hue="blue", secondary_hue="slate", neutral_hue="slate" ), css=""" /* Move toggle arrow to left side */ .gr-accordion { --accordion-arrow-size: 1.5em; } .gr-accordion > .label-wrap { flex-direction: row !important; justify-content: flex-start !important; gap: 1em; } .gr-accordion > .label-wrap > .icon { order: -1; } """ ) as demo: with gr.Tab("默认环境变量已设置 Gemini、OpenAI API Key "): # API Keys Section with gr.Row(): gr.Markdown( """

🔑 API Keys

""", elem_classes=["section-header"] ) theme_btn = gr.Button("🌓", scale=0, min_width=0) with gr.Accordion("配置 API Keys", open=False): gemini_key = gr.Textbox( label="Gemini API Key", type="password", value="", info="必须的" ) openai_key = gr.Textbox( label="OpenAI API Key", type="password", value="", info="只有在使用OpenAI文本转语音模型的情况下才需要此项" ) openai_base_url = gr.Textbox( label="OpenAI Base URL", value="", info="可选,留空使用默认URL:https://api.openai.com/v1" ) elevenlabs_key = gr.Textbox( label="ElevenLabs API Key", type="password", value="", info="建议使用ElevenLabs TTS模型,仅在使用该模型时才需要此项" ) # Content Input Section gr.Markdown( """

📝 输入内容

""", elem_classes=["section-header"] ) with gr.Accordion("设置输入内容", open=False): with gr.Group(): text_input = gr.Textbox( label="文本输入", placeholder="在此输入或粘贴文字...", lines=3 ) urls_input = gr.Textbox( label="URLs", placeholder="请逐行输入网址,支持网站和YouTube视频链接.", lines=3 ) # Place PDF and Image uploads side by side with gr.Row(): with gr.Column(): pdf_files = gr.Files( # Changed from gr.File to gr.Files label="上传 PDFs", # Updated label file_types=[".pdf"], type="binary" ) gr.Markdown("*上传一个或多个PDF文件来创建播客*", elem_classes=["file-info"]) with gr.Column(): image_files = gr.Files( label="上传图片", file_types=["image"], type="binary" ) gr.Markdown("*上传一个或多个图片文件来创建播客*", elem_classes=["file-info"]) # Customization Section gr.Markdown( """

⚙️ 自定义选项

""", elem_classes=["section-header"] ) with gr.Accordion("自定义选项", open=False): # Basic Settings gr.Markdown( """

📊 基本设置

""", ) word_count = gr.Slider( minimum=500, maximum=5000, value=2000, step=100, label="字数统计", info="目标字数(用于生成内容)" ) conversation_style = gr.Textbox( label="对话风格", value="生动活泼,节奏明快,热情洋溢", info="用于对话的风格列表(以逗号分隔)" ) # Roles and Structure gr.Markdown( """

👥 角色设定与结构安排

""", ) roles_person1 = gr.Textbox( label="第一位发言者的角色", value="主要负责总结的人", info="在对话中,第一个说话人扮演的角色" ) roles_person2 = gr.Textbox( label="第二位发言者的角色", value="提问者/释疑者", info="在对话中,第二个说话人所扮演的角色或承担的任务" ) dialogue_structure = gr.Textbox( label="对话结构", value="引言,主要内容的概括,总结", info="对话结构的各个部分(用逗号隔开)" ) # Podcast Identity gr.Markdown( """

🎙️ 播客特色

""", ) podcast_name = gr.Textbox( label="播客名", value="猛然间", info="播客的名字" ) podcast_tagline = gr.Textbox( label="播客宣传语", value="猛然回首,太匆匆", info="播客的宣传语或副标题" ) output_language = gr.Textbox( label="输出语言", value="Chinese", info="播客使用的语言" ) api_key_label = gr.Textbox( label="自定义基于云的 LLM", value="GEMINI_API_KEY", info="可选,默认使用 Gemini,如使用 OPENAI,上面填入 'OPENAI_API_KEY' 并保证设置好环境变量且设置好下面的模型" ) llm_model_name = gr.Textbox( label="设置好对应自定义基于云的 LLM 模型", value="gemini-1.5-pro-latest", info="可选,配合上面的参数,默认是 Gemini 的 gemini-1.5-pro-latest,默认 OPENAI 可支持模型 api.168369.xyz/v1/models 获取" ) longform = gr.Checkbox( label="长篇模式", value=False, info="启用长篇内容生成模式" ) # Voice Settings gr.Markdown( """

🗣️ 语音设置

""", ) tts_model = gr.Radio( choices=["openai", "elevenlabs", "edge"], value="openai", label="文本转语音模型", info="选择语音合成模型 (edge 免费但音质较差, 其他模型音质更好但需申请 API keys)" ) # Advanced Settings gr.Markdown( """

🔧 高级选项

""", ) creativity_level = gr.Slider( minimum=0, maximum=1, value=0.7, step=0.1, label="创意等级", info="调节生成对话的创意程度(0 为注重事实,1 为更具创意)" ) user_instructions = gr.Textbox( label="个性化指令", value="", lines=2, placeholder="在此处添加你希望AI遵循的具体指令,以控制对话的走向和内容...", info="一些额外的指令,用来帮助AI更好地理解你想要聊天的内容和方向" ) # Output Section gr.Markdown( """

🎵 生成结果

""", elem_classes=["section-header"] ) with gr.Group(): generate_btn = gr.Button("🎙️ 生成播客", variant="primary") audio_output = gr.Audio( type="filepath", label="生成的播客" ) # Handle generation generate_btn.click( process_inputs, inputs=[ text_input, urls_input, pdf_files, image_files, gemini_key, openai_key, openai_base_url, elevenlabs_key, word_count, conversation_style, roles_person1, roles_person2, dialogue_structure, podcast_name, podcast_tagline, output_language, tts_model, creativity_level, user_instructions, api_key_label, llm_model_name, longform ], outputs=audio_output ) # Add theme toggle functionality theme_btn.click( None, None, None, js=""" function() { document.querySelector('body').classList.toggle('dark'); return []; } """ ) if __name__ == "__main__": demo.queue().launch(share=True)