import streamlit as st import os import time import torch import logging from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration # Set Streamlit page configuration st.set_page_config(page_title="M2M100 Translator") # Check device if torch.cuda.is_available(): device = torch.device("cuda:0") else: device = torch.device("cpu") logging.warning("GPU not found, using CPU, translation will be very slow.") # Language code mapping lang_id = { "Afrikaans": "af", "Amharic": "am", "Arabic": "ar", "Asturian": "ast", "Azerbaijani": "az", "Bashkir": "ba", "Belarusian": "be", "Bulgarian": "bg", "Bengali": "bn", "Breton": "br", "Bosnian": "bs", "Catalan": "ca", "Cebuano": "ceb", "Czech": "cs", "Welsh": "cy", "Danish": "da", "German": "de", "Greeek": "el", "English": "en", "Spanish": "es", "Estonian": "et", "Persian": "fa", "Fulah": "ff", "Finnish": "fi", "French": "fr", "Western Frisian": "fy", "Irish": "ga", "Gaelic": "gd", "Galician": "gl", "Gujarati": "gu", "Hausa": "ha", "Hebrew": "he", "Hindi": "hi", "Croatian": "hr", "Haitian": "ht", "Hungarian": "hu", "Armenian": "hy", "Indonesian": "id", "Igbo": "ig", "Iloko": "ilo", "Icelandic": "is", "Italian": "it", "Japanese": "ja", "Javanese": "jv", "Georgian": "ka", "Kazakh": "kk", "Central Khmer": "km", "Kannada": "kn", "Korean": "ko", "Luxembourgish": "lb", "Ganda": "lg", "Lingala": "ln", "Lao": "lo", "Lithuanian": "lt", "Latvian": "lv", "Malagasy": "mg", "Macedonian": "mk", "Malayalam": "ml", "Mongolian": "mn", "Marathi": "mr", "Malay": "ms", "Burmese": "my", "Nepali": "ne", "Dutch": "nl", "Norwegian": "no", "Northern Sotho": "ns", "Occitan": "oc", "Oriya": "or", "Panjabi": "pa", "Polish": "pl", "Pushto": "ps", "Portuguese": "pt", "Romanian": "ro", "Russian": "ru", "Sindhi": "sd", "Sinhala": "si", "Slovak": "sk", "Slovenian": "sl", "Somali": "so", "Albanian": "sq", "Serbian": "sr", "Swati": "ss", "Sundanese": "su", "Swedish": "sv", "Swahili": "sw", "Tamil": "ta", "Thai": "th", "Tagalog": "tl", "Tswana": "tn", "Turkish": "tr", "Ukrainian": "uk", "Urdu": "ur", "Uzbek": "uz", "Vietnamese": "vi", "Wolof": "wo", "Xhosa": "xh", "Yiddish": "yi", "Yoruba": "yo", "Chinese": "zh", "Zulu": "zu", } # Cache the model and tokenizer using new API @st.cache_resource def load_model(pretrained_model="facebook/m2m100_1.2B", cache_dir="models/"): tokenizer = M2M100Tokenizer.from_pretrained(pretrained_model, cache_dir=cache_dir) model = M2M100ForConditionalGeneration.from_pretrained( pretrained_model, cache_dir=cache_dir ).to(device) model.eval() return tokenizer, model # App Title and Intro st.title("🌐 M2M100 Translator") st.write(""" M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation. It supports **100 languages** and translates in **9900 directions**. Model: `facebook/m2m100_1.2B` More info: [Paper](https://arxiv.org/abs/2010.11125) | [Repo](https://github.com/pytorch/fairseq/tree/master/examples/m2m_100) """) # Input Text Area user_input = st.text_area( "Enter text to translate:", height=200, max_chars=5120, placeholder="Type your sentence here..." ) # Language selectors source_lang = st.selectbox("Select source language", sorted(lang_id.keys())) target_lang = st.selectbox("Select target language", sorted(lang_id.keys())) # Translate Button if st.button("Translate"): with st.spinner("Translating... Please wait"): time_start = time.time() tokenizer, model = load_model() src_lang = lang_id[source_lang] trg_lang = lang_id[target_lang] tokenizer.src_lang = src_lang with torch.no_grad(): encoded_input = tokenizer(user_input, return_tensors="pt").to(device) generated_tokens = model.generate( **encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang) ) translated_text = tokenizer.batch_decode( generated_tokens, skip_special_tokens=True )[0] time_end = time.time() st.success("Translation complete!") st.markdown(f"**Translated Text:**\n\n{translated_text}") st.caption(f"Time taken: {round(time_end - time_start, 2)} seconds")