import streamlit as st import torch import logging import time from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration # Configure page st.set_page_config(page_title="🌐 Translator", page_icon="🌐") # Device detection device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if device.type == "cpu": logging.warning("⚠️ GPU not found — using CPU (translation may be slow).") # Language mapping lang_id = { "Afrikaans": "af", "Amharic": "am", "Arabic": "ar", "Asturian": "ast", "Azerbaijani": "az", "Bashkir": "ba", "Belarusian": "be", "Bulgarian": "bg", "Bengali": "bn", "Breton": "br", "Bosnian": "bs", "Catalan": "ca", "Cebuano": "ceb", "Czech": "cs", "Welsh": "cy", "Danish": "da", "German": "de", "Greeek": "el", "English": "en", "Spanish": "es", "Estonian": "et", "Persian": "fa", "Fulah": "ff", "Finnish": "fi", "French": "fr", "Western Frisian": "fy", "Irish": "ga", "Gaelic": "gd", "Galician": "gl", "Gujarati": "gu", "Hausa": "ha", "Hebrew": "he", "Hindi": "hi", "Croatian": "hr", "Haitian": "ht", "Hungarian": "hu", "Armenian": "hy", "Indonesian": "id", "Igbo": "ig", "Iloko": "ilo", "Icelandic": "is", "Italian": "it", "Japanese": "ja", "Javanese": "jv", "Georgian": "ka", "Kazakh": "kk", "Central Khmer": "km", "Kannada": "kn", "Korean": "ko", "Luxembourgish": "lb", "Ganda": "lg", "Lingala": "ln", "Lao": "lo", "Lithuanian": "lt", "Latvian": "lv", "Malagasy": "mg", "Macedonian": "mk", "Malayalam": "ml", "Mongolian": "mn", "Marathi": "mr", "Malay": "ms", "Burmese": "my", "Nepali": "ne", "Dutch": "nl", "Norwegian": "no", "Northern Sotho": "ns", "Occitan": "oc", "Oriya": "or", "Panjabi": "pa", "Polish": "pl", "Pushto": "ps", "Portuguese": "pt", "Romanian": "ro", "Russian": "ru", "Sindhi": "sd", "Sinhala": "si", "Slovak": "sk", "Slovenian": "sl", "Somali": "so", "Albanian": "sq", "Serbian": "sr", "Swati": "ss", "Sundanese": "su", "Swedish": "sv", "Swahili": "sw", "Tamil": "ta", "Thai": "th", "Tagalog": "tl", "Tswana": "tn", "Turkish": "tr", "Ukrainian": "uk", "Urdu": "ur", "Uzbek": "uz", "Vietnamese": "vi", "Wolof": "wo", "Xhosa": "xh", "Yiddish": "yi", "Yoruba": "yo", "Chinese": "zh", "Zulu": "zu", } # Cache model/tokenizer loading @st.cache_resource def load_model(): tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_1.2B") model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_1.2B").to(device) model.eval() return tokenizer, model # Title st.title("🌍 M2M100 Language Translator") st.markdown("🔁 Translate text between **100+ languages** using Facebook's `M2M100` multilingual model.") # Text input user_input = st.text_area( "✏️ Enter your text below:", height=200, max_chars=5120, placeholder="E.g. Hello, how are you?" ) # Language selections (default: English → Hindi) col1, col2 = st.columns(2) with col1: source_lang = st.selectbox("🌐 Source Language", sorted(lang_id.keys()), index=list(lang_id.keys()).index("English")) with col2: target_lang = st.selectbox("🔁 Target Language", sorted(lang_id.keys()), index=list(lang_id.keys()).index("Hindi")) # Translate Button if st.button("🚀 Translate", disabled=(not user_input.strip())): with st.spinner("Translating... Please wait"): start = time.time() tokenizer, model = load_model() src = lang_id[source_lang] tgt = lang_id[target_lang] tokenizer.src_lang = src with torch.no_grad(): encoded = tokenizer(user_input, return_tensors="pt").to(device) output = model.generate( **encoded, forced_bos_token_id=tokenizer.get_lang_id(tgt) ) result = tokenizer.batch_decode(output, skip_special_tokens=True)[0] end = time.time() st.success("✅ Translation complete!") st.markdown("### 📝 Translated Text") st.text_area("Output", value=result, height=150, disabled=True) st.caption(f"⏱️ Time taken: {round(end - start, 2)} seconds") # Optional reset st.markdown("---") if st.button("🔄 Reset"): st.experimental_rerun()