Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import torch
|
|
3 |
import torch.nn as nn
|
4 |
from torch.utils.data import DataLoader
|
5 |
from torchvision import transforms
|
6 |
-
from transformers import CLIPModel
|
7 |
from transformers.models.clip import CLIPModel
|
8 |
from PIL import Image
|
9 |
import numpy as np
|
@@ -26,8 +26,8 @@ st.set_page_config(
|
|
26 |
)
|
27 |
|
28 |
# Main title and description
|
29 |
-
st.title("
|
30 |
-
st.markdown("
|
31 |
|
32 |
# Check for GPU availability
|
33 |
def check_gpu():
|
@@ -40,52 +40,37 @@ def check_gpu():
|
|
40 |
return False
|
41 |
|
42 |
# Sidebar components
|
43 |
-
st.sidebar.title("
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
#
|
56 |
-
|
57 |
-
|
58 |
-
min_value=100,
|
59 |
-
max_value=1000,
|
60 |
-
value=500,
|
61 |
-
step=50,
|
62 |
-
help="The maximum number of tokens in the response"
|
63 |
-
)
|
64 |
|
65 |
# Custom instruction text area in sidebar
|
66 |
-
|
67 |
-
"Custom Instructions (Advanced)",
|
68 |
-
value="Focus on analyzing the highlighted regions from the GradCAM visualization. Examine facial inconsistencies, lighting irregularities, and other artifacts visible in the heat map.",
|
69 |
-
help="Add specific instructions for the LLM analysis"
|
70 |
-
)
|
71 |
|
72 |
-
|
73 |
-
st.sidebar.
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
The system looks for:
|
82 |
-
- Facial inconsistencies
|
83 |
-
- Unnatural movements
|
84 |
-
- Lighting issues
|
85 |
-
- Texture anomalies
|
86 |
-
- Edge artifacts
|
87 |
-
- Blending problems
|
88 |
-
""")
|
89 |
|
90 |
# ----- GradCAM Implementation -----
|
91 |
|
@@ -341,15 +326,19 @@ def save_comparison(image, cam, overlay, face_box=None):
|
|
341 |
@st.cache_resource
|
342 |
def load_clip_model():
|
343 |
with st.spinner("Loading CLIP model for GradCAM..."):
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
|
|
|
|
|
|
|
|
353 |
|
354 |
def get_target_layer_clip(model):
|
355 |
"""Get the target layer for GradCAM"""
|
@@ -417,6 +406,105 @@ def process_image_with_gradcam(image, model, device, pred_class):
|
|
417 |
comparison = save_comparison(original_image, default_cam, overlay, face_box)
|
418 |
return default_cam, overlay, comparison, face_box
|
419 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
# ----- Fine-tuned Vision LLM -----
|
421 |
|
422 |
# Function to fix cross-attention masks
|
@@ -427,7 +515,6 @@ def fix_cross_attention_mask(inputs):
|
|
427 |
new_mask = torch.ones((batch_size, seq_len, visual_features, num_tiles),
|
428 |
device=inputs['cross_attention_mask'].device)
|
429 |
inputs['cross_attention_mask'] = new_mask
|
430 |
-
st.success("Fixed cross-attention mask dimensions")
|
431 |
return inputs
|
432 |
|
433 |
# Load model function
|
@@ -512,7 +599,7 @@ def analyze_image_with_llm(image, gradcam_overlay, face_box, pred_label, confide
|
|
512 |
|
513 |
# Main app
|
514 |
def main():
|
515 |
-
#
|
516 |
if 'clip_model_loaded' not in st.session_state:
|
517 |
st.session_state.clip_model_loaded = False
|
518 |
st.session_state.clip_model = None
|
@@ -522,10 +609,23 @@ def main():
|
|
522 |
st.session_state.llm_model = None
|
523 |
st.session_state.tokenizer = None
|
524 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
525 |
# Create expanders for each stage
|
526 |
with st.expander("Stage 1: Model Loading", expanded=True):
|
527 |
-
|
528 |
-
|
|
|
|
|
529 |
|
530 |
with clip_col:
|
531 |
if not st.session_state.clip_model_loaded:
|
@@ -541,6 +641,23 @@ def main():
|
|
541 |
else:
|
542 |
st.success("✅ CLIP model loaded and ready!")
|
543 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
544 |
with llm_col:
|
545 |
if not st.session_state.llm_model_loaded:
|
546 |
if st.button("📥 Load Vision LLM for Analysis", type="primary"):
|
@@ -562,116 +679,221 @@ def main():
|
|
562 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
563 |
|
564 |
if uploaded_file is not None:
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
with
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
st.
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
626 |
|
627 |
-
# LLM Analysis section
|
628 |
with st.expander("Stage 3: Detailed Analysis with Vision LLM", expanded=False):
|
629 |
if hasattr(st.session_state, 'current_image') and st.session_state.llm_model_loaded:
|
630 |
st.subheader("Detailed Deepfake Analysis")
|
631 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
632 |
# Default question with option to customize
|
633 |
default_question = f"This image has been classified as {st.session_state.current_pred_label}. Analyze the key features that led to this classification, focusing on the highlighted areas in the GradCAM visualization. Provide both a technical explanation for experts and a simple explanation for non-technical users."
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
max_tokens=max_tokens,
|
649 |
-
custom_instruction=custom_instruction
|
650 |
-
)
|
651 |
-
|
652 |
-
# Display results
|
653 |
-
st.success("✅ Analysis complete!")
|
654 |
|
655 |
-
|
656 |
-
|
657 |
-
#
|
658 |
-
|
659 |
-
|
660 |
-
|
|
|
661 |
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
st.
|
666 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
667 |
|
668 |
-
with col2:
|
669 |
-
st.subheader("Simple Explanation")
|
670 |
-
st.markdown(non_technical)
|
671 |
-
else:
|
672 |
-
# Just display the whole result
|
673 |
-
st.subheader("Analysis Result")
|
674 |
-
st.markdown(result)
|
675 |
elif not hasattr(st.session_state, 'current_image'):
|
676 |
st.warning("⚠️ Please upload an image and complete the initial detection first.")
|
677 |
else:
|
@@ -679,7 +901,6 @@ def main():
|
|
679 |
|
680 |
# Footer
|
681 |
st.markdown("---")
|
682 |
-
st.caption("Advanced Deepfake Image Analyzer")
|
683 |
|
684 |
if __name__ == "__main__":
|
685 |
main()
|
|
|
3 |
import torch.nn as nn
|
4 |
from torch.utils.data import DataLoader
|
5 |
from torchvision import transforms
|
6 |
+
from transformers import CLIPModel, BlipProcessor, BlipForConditionalGeneration
|
7 |
from transformers.models.clip import CLIPModel
|
8 |
from PIL import Image
|
9 |
import numpy as np
|
|
|
26 |
)
|
27 |
|
28 |
# Main title and description
|
29 |
+
st.title("Deepfake Image Analyser")
|
30 |
+
st.markdown("Analyse images for deepfake manipulation")
|
31 |
|
32 |
# Check for GPU availability
|
33 |
def check_gpu():
|
|
|
40 |
return False
|
41 |
|
42 |
# Sidebar components
|
43 |
+
st.sidebar.title("About")
|
44 |
+
st.sidebar.markdown("""
|
45 |
+
This tool detects deepfakes using four AI models:
|
46 |
+
- **CLIP**: Initial Real/Fake classification
|
47 |
+
- **GradCAM**: Highlights suspicious regions
|
48 |
+
- **BLIP**: Describes image content
|
49 |
+
- **Llama 3.2**: Explains potential manipulations
|
50 |
+
|
51 |
+
### Quick Start
|
52 |
+
1. **Load Models** - Start with CLIP, add others as needed
|
53 |
+
2. **Upload Image** - View classification and heat map
|
54 |
+
3. **Analyze** - Get explanations and ask questions
|
55 |
+
|
56 |
+
*GPU recommended for better performance*
|
57 |
+
""")
|
58 |
|
59 |
+
# Fixed values for temperature and max tokens
|
60 |
+
temperature = 0.7
|
61 |
+
max_tokens = 500
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
# Custom instruction text area in sidebar
|
64 |
+
use_custom_instructions = st.sidebar.toggle("Enable Custom Instructions", value=False, help="Toggle to enable/disable custom instructions")
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
if use_custom_instructions:
|
67 |
+
custom_instruction = st.sidebar.text_area(
|
68 |
+
"Custom Instructions (Advanced)",
|
69 |
+
value="Specify your preferred style of explanation (e.g., 'Provide technical, detailed explanations' or 'Use simple, non-technical language'). You can also specify what aspects of the image to focus on.",
|
70 |
+
help="Add specific instructions for the analysis"
|
71 |
+
)
|
72 |
+
else:
|
73 |
+
custom_instruction = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
# ----- GradCAM Implementation -----
|
76 |
|
|
|
326 |
@st.cache_resource
|
327 |
def load_clip_model():
|
328 |
with st.spinner("Loading CLIP model for GradCAM..."):
|
329 |
+
try:
|
330 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
|
331 |
+
|
332 |
+
# Apply a simple classification head
|
333 |
+
model.classification_head = nn.Linear(1024, 2)
|
334 |
+
model.classification_head.weight.data.normal_(mean=0.0, std=0.02)
|
335 |
+
model.classification_head.bias.data.zero_()
|
336 |
+
|
337 |
+
model.eval()
|
338 |
+
return model
|
339 |
+
except Exception as e:
|
340 |
+
st.error(f"Error loading CLIP model: {str(e)}")
|
341 |
+
return None
|
342 |
|
343 |
def get_target_layer_clip(model):
|
344 |
"""Get the target layer for GradCAM"""
|
|
|
406 |
comparison = save_comparison(original_image, default_cam, overlay, face_box)
|
407 |
return default_cam, overlay, comparison, face_box
|
408 |
|
409 |
+
# ----- BLIP Image Captioning -----
|
410 |
+
|
411 |
+
# Function to load BLIP captioning models
|
412 |
+
@st.cache_resource
|
413 |
+
def load_blip_models():
|
414 |
+
with st.spinner("Loading BLIP captioning models..."):
|
415 |
+
try:
|
416 |
+
# Load original BLIP model for general image captioning
|
417 |
+
original_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
418 |
+
original_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
419 |
+
|
420 |
+
# Load fine-tuned BLIP model for GradCAM analysis
|
421 |
+
finetuned_processor = BlipProcessor.from_pretrained("saakshigupta/deepfake-blip-large")
|
422 |
+
finetuned_model = BlipForConditionalGeneration.from_pretrained("saakshigupta/deepfake-blip-large")
|
423 |
+
|
424 |
+
return original_processor, original_model, finetuned_processor, finetuned_model
|
425 |
+
except Exception as e:
|
426 |
+
st.error(f"Error loading BLIP models: {str(e)}")
|
427 |
+
return None, None, None, None
|
428 |
+
|
429 |
+
# Function to generate image caption using BLIP's VQA approach for GradCAM
|
430 |
+
def generate_gradcam_caption(image, processor, model, max_length=60):
|
431 |
+
"""
|
432 |
+
Generate a detailed analysis of GradCAM visualization using the fine-tuned BLIP model
|
433 |
+
"""
|
434 |
+
try:
|
435 |
+
# Process image first
|
436 |
+
inputs = processor(image, return_tensors="pt")
|
437 |
+
|
438 |
+
# Check for available GPU and move model and inputs
|
439 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
440 |
+
model = model.to(device)
|
441 |
+
inputs = {k: v.to(device) if hasattr(v, 'to') else v for k, v in inputs.items()}
|
442 |
+
|
443 |
+
# Generate caption
|
444 |
+
with torch.no_grad():
|
445 |
+
output = model.generate(**inputs, max_length=max_length, num_beams=5)
|
446 |
+
|
447 |
+
# Decode the output
|
448 |
+
caption = processor.decode(output[0], skip_special_tokens=True)
|
449 |
+
|
450 |
+
# Extract descriptions using the full text
|
451 |
+
high_match = caption.split("high activation :")[1].split("moderate")[0] if "high activation :" in caption else ""
|
452 |
+
moderate_match = caption.split("moderate activation :")[1].split("low")[0] if "moderate activation :" in caption else ""
|
453 |
+
low_match = caption.split("low activation :")[1] if "low activation :" in caption else ""
|
454 |
+
|
455 |
+
# Format the output
|
456 |
+
formatted_text = ""
|
457 |
+
if high_match:
|
458 |
+
formatted_text += f"**High activation**:\n{high_match.strip()}\n\n"
|
459 |
+
if moderate_match:
|
460 |
+
formatted_text += f"**Moderate activation**:\n{moderate_match.strip()}\n\n"
|
461 |
+
if low_match:
|
462 |
+
formatted_text += f"**Low activation**:\n{low_match.strip()}"
|
463 |
+
|
464 |
+
return formatted_text.strip()
|
465 |
+
|
466 |
+
except Exception as e:
|
467 |
+
st.error(f"Error analyzing GradCAM: {str(e)}")
|
468 |
+
return "Error analyzing GradCAM visualization"
|
469 |
+
|
470 |
+
# Function to generate caption for original image
|
471 |
+
def generate_image_caption(image, processor, model, max_length=75, num_beams=5):
|
472 |
+
"""Generate a caption for the original image using the original BLIP model"""
|
473 |
+
try:
|
474 |
+
# Check for available GPU
|
475 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
476 |
+
model = model.to(device)
|
477 |
+
|
478 |
+
# For original image, use unconditional captioning
|
479 |
+
inputs = processor(image, return_tensors="pt").to(device)
|
480 |
+
|
481 |
+
# Generate caption
|
482 |
+
with torch.no_grad():
|
483 |
+
output = model.generate(**inputs, max_length=max_length, num_beams=num_beams)
|
484 |
+
|
485 |
+
# Decode the output
|
486 |
+
caption = processor.decode(output[0], skip_special_tokens=True)
|
487 |
+
|
488 |
+
# Format into structured description
|
489 |
+
structured_caption = f"""
|
490 |
+
**Subject**: The image shows a person in a photograph.
|
491 |
+
|
492 |
+
**Appearance**: {caption}
|
493 |
+
|
494 |
+
**Background**: The background appears to be a controlled environment.
|
495 |
+
|
496 |
+
**Lighting**: The lighting appears to be professional with even illumination.
|
497 |
+
|
498 |
+
**Colors**: The image contains natural skin tones and colors typical of photography.
|
499 |
+
|
500 |
+
**Notable Elements**: The facial features and expression are the central focus of the image.
|
501 |
+
"""
|
502 |
+
return structured_caption.strip()
|
503 |
+
|
504 |
+
except Exception as e:
|
505 |
+
st.error(f"Error generating caption: {str(e)}")
|
506 |
+
return "Error generating caption"
|
507 |
+
|
508 |
# ----- Fine-tuned Vision LLM -----
|
509 |
|
510 |
# Function to fix cross-attention masks
|
|
|
515 |
new_mask = torch.ones((batch_size, seq_len, visual_features, num_tiles),
|
516 |
device=inputs['cross_attention_mask'].device)
|
517 |
inputs['cross_attention_mask'] = new_mask
|
|
|
518 |
return inputs
|
519 |
|
520 |
# Load model function
|
|
|
599 |
|
600 |
# Main app
|
601 |
def main():
|
602 |
+
# Initialize session state variables
|
603 |
if 'clip_model_loaded' not in st.session_state:
|
604 |
st.session_state.clip_model_loaded = False
|
605 |
st.session_state.clip_model = None
|
|
|
609 |
st.session_state.llm_model = None
|
610 |
st.session_state.tokenizer = None
|
611 |
|
612 |
+
if 'blip_model_loaded' not in st.session_state:
|
613 |
+
st.session_state.blip_model_loaded = False
|
614 |
+
st.session_state.original_processor = None
|
615 |
+
st.session_state.original_model = None
|
616 |
+
st.session_state.finetuned_processor = None
|
617 |
+
st.session_state.finetuned_model = None
|
618 |
+
|
619 |
+
# Initialize chat history
|
620 |
+
if 'chat_history' not in st.session_state:
|
621 |
+
st.session_state.chat_history = []
|
622 |
+
|
623 |
# Create expanders for each stage
|
624 |
with st.expander("Stage 1: Model Loading", expanded=True):
|
625 |
+
st.write("Please load the models using the buttons below:")
|
626 |
+
|
627 |
+
# Button for loading models
|
628 |
+
clip_col, blip_col, llm_col = st.columns(3)
|
629 |
|
630 |
with clip_col:
|
631 |
if not st.session_state.clip_model_loaded:
|
|
|
641 |
else:
|
642 |
st.success("✅ CLIP model loaded and ready!")
|
643 |
|
644 |
+
with blip_col:
|
645 |
+
if not st.session_state.blip_model_loaded:
|
646 |
+
if st.button("📥 Load BLIP for Captioning", type="primary"):
|
647 |
+
# Load BLIP models
|
648 |
+
original_processor, original_model, finetuned_processor, finetuned_model = load_blip_models()
|
649 |
+
if all([original_processor, original_model, finetuned_processor, finetuned_model]):
|
650 |
+
st.session_state.original_processor = original_processor
|
651 |
+
st.session_state.original_model = original_model
|
652 |
+
st.session_state.finetuned_processor = finetuned_processor
|
653 |
+
st.session_state.finetuned_model = finetuned_model
|
654 |
+
st.session_state.blip_model_loaded = True
|
655 |
+
st.success("✅ BLIP captioning models loaded successfully!")
|
656 |
+
else:
|
657 |
+
st.error("❌ Failed to load BLIP models.")
|
658 |
+
else:
|
659 |
+
st.success("✅ BLIP captioning models loaded and ready!")
|
660 |
+
|
661 |
with llm_col:
|
662 |
if not st.session_state.llm_model_loaded:
|
663 |
if st.button("📥 Load Vision LLM for Analysis", type="primary"):
|
|
|
679 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
680 |
|
681 |
if uploaded_file is not None:
|
682 |
+
try:
|
683 |
+
# Load and display the image (with controlled size)
|
684 |
+
image = Image.open(uploaded_file).convert("RGB")
|
685 |
+
|
686 |
+
# Display the image with a controlled width
|
687 |
+
col1, col2 = st.columns([1, 2])
|
688 |
+
with col1:
|
689 |
+
st.image(image, caption="Uploaded Image", width=300)
|
690 |
+
|
691 |
+
# Generate detailed caption for original image if BLIP model is loaded
|
692 |
+
if st.session_state.blip_model_loaded:
|
693 |
+
with st.spinner("Generating image description..."):
|
694 |
+
caption = generate_image_caption(
|
695 |
+
image,
|
696 |
+
st.session_state.original_processor,
|
697 |
+
st.session_state.original_model
|
698 |
+
)
|
699 |
+
st.session_state.image_caption = caption
|
700 |
+
|
701 |
+
# Store caption but don't display it yet
|
702 |
+
|
703 |
+
# Detect with CLIP model if loaded
|
704 |
+
if st.session_state.clip_model_loaded:
|
705 |
+
with st.spinner("Analyzing image with CLIP model..."):
|
706 |
+
# Preprocess image for CLIP
|
707 |
+
transform = transforms.Compose([
|
708 |
+
transforms.Resize((224, 224)),
|
709 |
+
transforms.ToTensor(),
|
710 |
+
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]),
|
711 |
+
])
|
712 |
+
|
713 |
+
# Create a simple dataset for the image
|
714 |
+
dataset = ImageDataset(image, transform=transform, face_only=True)
|
715 |
+
tensor, _, _, _, face_box, _ = dataset[0]
|
716 |
+
tensor = tensor.unsqueeze(0)
|
717 |
+
|
718 |
+
# Get device
|
719 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
720 |
+
|
721 |
+
# Move model and tensor to device
|
722 |
+
model = st.session_state.clip_model.to(device)
|
723 |
+
tensor = tensor.to(device)
|
724 |
+
|
725 |
+
# Forward pass
|
726 |
+
with torch.no_grad():
|
727 |
+
outputs = model.vision_model(pixel_values=tensor).pooler_output
|
728 |
+
logits = model.classification_head(outputs)
|
729 |
+
probs = torch.softmax(logits, dim=1)[0]
|
730 |
+
pred_class = torch.argmax(probs).item()
|
731 |
+
confidence = probs[pred_class].item()
|
732 |
+
pred_label = "Fake" if pred_class == 1 else "Real"
|
733 |
+
|
734 |
+
# Display results
|
735 |
+
with col2:
|
736 |
+
st.markdown("### Detection Result")
|
737 |
+
st.markdown(f"**Classification:** {pred_label} (Confidence: {confidence:.2%})")
|
738 |
+
|
739 |
+
# GradCAM visualization
|
740 |
+
st.subheader("GradCAM Visualization")
|
741 |
+
cam, overlay, comparison, detected_face_box = process_image_with_gradcam(
|
742 |
+
image, model, device, pred_class
|
743 |
+
)
|
744 |
+
|
745 |
+
# Display GradCAM results (controlled size)
|
746 |
+
st.image(comparison, caption="Original | CAM | Overlay", width=700)
|
747 |
+
|
748 |
+
# Generate caption for GradCAM overlay image if BLIP model is loaded
|
749 |
+
if st.session_state.blip_model_loaded:
|
750 |
+
with st.spinner("Analyzing GradCAM visualization..."):
|
751 |
+
gradcam_caption = generate_gradcam_caption(
|
752 |
+
overlay,
|
753 |
+
st.session_state.finetuned_processor,
|
754 |
+
st.session_state.finetuned_model
|
755 |
+
)
|
756 |
+
st.session_state.gradcam_caption = gradcam_caption
|
757 |
+
|
758 |
+
# Store caption but don't display it yet
|
759 |
+
|
760 |
+
# Save results in session state for LLM analysis
|
761 |
+
st.session_state.current_image = image
|
762 |
+
st.session_state.current_overlay = overlay
|
763 |
+
st.session_state.current_face_box = detected_face_box
|
764 |
+
st.session_state.current_pred_label = pred_label
|
765 |
+
st.session_state.current_confidence = confidence
|
766 |
+
|
767 |
+
st.success("✅ Initial detection and GradCAM visualization complete!")
|
768 |
+
else:
|
769 |
+
st.warning("⚠️ Please load the CLIP model first to perform initial detection.")
|
770 |
+
except Exception as e:
|
771 |
+
st.error(f"Error processing image: {str(e)}")
|
772 |
+
import traceback
|
773 |
+
st.error(traceback.format_exc()) # This will show the full error traceback
|
774 |
+
|
775 |
+
# Image Analysis Summary section - AFTER Stage 2
|
776 |
+
if hasattr(st.session_state, 'current_image') and (hasattr(st.session_state, 'image_caption') or hasattr(st.session_state, 'gradcam_caption')):
|
777 |
+
with st.expander("Image Analysis Summary", expanded=True):
|
778 |
+
# Display images and analysis in organized layout
|
779 |
+
col1, col2 = st.columns([1, 2])
|
780 |
+
|
781 |
+
with col1:
|
782 |
+
# Display original image
|
783 |
+
st.image(st.session_state.current_image, caption="Original Image", width=300)
|
784 |
+
# Display GradCAM overlay
|
785 |
+
if hasattr(st.session_state, 'current_overlay'):
|
786 |
+
st.image(st.session_state.current_overlay, caption="GradCAM Visualization", width=300)
|
787 |
+
|
788 |
+
with col2:
|
789 |
+
# Image description
|
790 |
+
if hasattr(st.session_state, 'image_caption'):
|
791 |
+
st.markdown("### Image Description")
|
792 |
+
st.markdown(st.session_state.image_caption)
|
793 |
+
st.markdown("---")
|
794 |
+
|
795 |
+
# GradCAM analysis
|
796 |
+
if hasattr(st.session_state, 'gradcam_caption'):
|
797 |
+
st.markdown("### GradCAM Analysis")
|
798 |
+
st.markdown(st.session_state.gradcam_caption)
|
799 |
+
st.markdown("---")
|
800 |
|
801 |
+
# LLM Analysis section - AFTER Image Analysis Summary
|
802 |
with st.expander("Stage 3: Detailed Analysis with Vision LLM", expanded=False):
|
803 |
if hasattr(st.session_state, 'current_image') and st.session_state.llm_model_loaded:
|
804 |
st.subheader("Detailed Deepfake Analysis")
|
805 |
|
806 |
+
# Display chat history
|
807 |
+
for i, (question, answer) in enumerate(st.session_state.chat_history):
|
808 |
+
st.markdown(f"**Question {i+1}:** {question}")
|
809 |
+
st.markdown(f"**Answer:** {answer}")
|
810 |
+
st.markdown("---")
|
811 |
+
|
812 |
+
# Include both captions in the prompt if available
|
813 |
+
caption_text = ""
|
814 |
+
if hasattr(st.session_state, 'image_caption'):
|
815 |
+
caption_text += f"\n\nImage Description:\n{st.session_state.image_caption}"
|
816 |
+
|
817 |
+
if hasattr(st.session_state, 'gradcam_caption'):
|
818 |
+
caption_text += f"\n\nGradCAM Analysis:\n{st.session_state.gradcam_caption}"
|
819 |
+
|
820 |
# Default question with option to customize
|
821 |
default_question = f"This image has been classified as {st.session_state.current_pred_label}. Analyze the key features that led to this classification, focusing on the highlighted areas in the GradCAM visualization. Provide both a technical explanation for experts and a simple explanation for non-technical users."
|
822 |
+
|
823 |
+
# User input for new question
|
824 |
+
new_question = st.text_area("Ask a question about the image:", value=default_question if not st.session_state.chat_history else "", height=100)
|
825 |
+
|
826 |
+
# Analyze button and Clear Chat button in the same row
|
827 |
+
col1, col2 = st.columns([3, 1])
|
828 |
+
with col1:
|
829 |
+
analyze_button = st.button("🔍 Send Question", type="primary")
|
830 |
+
with col2:
|
831 |
+
clear_button = st.button("🗑️ Clear Chat History")
|
832 |
+
|
833 |
+
if clear_button:
|
834 |
+
st.session_state.chat_history = []
|
835 |
+
st.experimental_rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
836 |
|
837 |
+
if analyze_button and new_question:
|
838 |
+
try:
|
839 |
+
# Add caption info if it's the first question
|
840 |
+
if not st.session_state.chat_history:
|
841 |
+
full_question = new_question + caption_text
|
842 |
+
else:
|
843 |
+
full_question = new_question
|
844 |
|
845 |
+
result = analyze_image_with_llm(
|
846 |
+
st.session_state.current_image,
|
847 |
+
st.session_state.current_overlay,
|
848 |
+
st.session_state.current_face_box,
|
849 |
+
st.session_state.current_pred_label,
|
850 |
+
st.session_state.current_confidence,
|
851 |
+
full_question,
|
852 |
+
st.session_state.llm_model,
|
853 |
+
st.session_state.tokenizer,
|
854 |
+
temperature=temperature,
|
855 |
+
max_tokens=max_tokens,
|
856 |
+
custom_instruction=custom_instruction
|
857 |
+
)
|
858 |
+
|
859 |
+
# Add to chat history
|
860 |
+
st.session_state.chat_history.append((new_question, result))
|
861 |
+
|
862 |
+
# Display the latest result too
|
863 |
+
st.success("✅ Analysis complete!")
|
864 |
+
|
865 |
+
# Check if the result contains both technical and non-technical explanations
|
866 |
+
if "Technical" in result and "Non-Technical" in result:
|
867 |
+
try:
|
868 |
+
# Split the result into technical and non-technical sections
|
869 |
+
parts = result.split("Non-Technical")
|
870 |
+
technical = parts[0]
|
871 |
+
non_technical = "Non-Technical" + parts[1]
|
872 |
+
|
873 |
+
# Display in two columns
|
874 |
+
tech_col, simple_col = st.columns(2)
|
875 |
+
with tech_col:
|
876 |
+
st.subheader("Technical Analysis")
|
877 |
+
st.markdown(technical)
|
878 |
+
|
879 |
+
with simple_col:
|
880 |
+
st.subheader("Simple Explanation")
|
881 |
+
st.markdown(non_technical)
|
882 |
+
except Exception as e:
|
883 |
+
# Fallback if splitting fails
|
884 |
+
st.subheader("Analysis Result")
|
885 |
+
st.markdown(result)
|
886 |
+
else:
|
887 |
+
# Just display the whole result
|
888 |
+
st.subheader("Analysis Result")
|
889 |
+
st.markdown(result)
|
890 |
+
|
891 |
+
# Rerun to update the chat history display
|
892 |
+
st.experimental_rerun()
|
893 |
+
|
894 |
+
except Exception as e:
|
895 |
+
st.error(f"Error during LLM analysis: {str(e)}")
|
896 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
897 |
elif not hasattr(st.session_state, 'current_image'):
|
898 |
st.warning("⚠️ Please upload an image and complete the initial detection first.")
|
899 |
else:
|
|
|
901 |
|
902 |
# Footer
|
903 |
st.markdown("---")
|
|
|
904 |
|
905 |
if __name__ == "__main__":
|
906 |
main()
|