Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,22 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
|
|
|
|
|
|
|
|
|
|
3 |
from PIL import Image
|
|
|
4 |
import io
|
|
|
|
|
|
|
5 |
from peft import PeftModel
|
6 |
from unsloth import FastVisionModel
|
7 |
-
import tempfile
|
8 |
import os
|
|
|
|
|
|
|
9 |
|
10 |
# App title and description
|
11 |
st.set_page_config(
|
@@ -15,8 +26,8 @@ st.set_page_config(
|
|
15 |
)
|
16 |
|
17 |
# Main title and description
|
18 |
-
st.title("Deepfake Image Analyzer")
|
19 |
-
st.markdown("
|
20 |
|
21 |
# Check for GPU availability
|
22 |
def check_gpu():
|
@@ -54,26 +65,360 @@ max_tokens = st.sidebar.slider(
|
|
54 |
# Custom instruction text area in sidebar
|
55 |
custom_instruction = st.sidebar.text_area(
|
56 |
"Custom Instructions (Advanced)",
|
57 |
-
value="
|
58 |
-
help="Add specific instructions for the
|
59 |
)
|
60 |
|
61 |
# About section in sidebar
|
62 |
st.sidebar.markdown("---")
|
63 |
st.sidebar.subheader("About")
|
64 |
st.sidebar.markdown("""
|
65 |
-
This analyzer
|
|
|
|
|
|
|
|
|
|
|
66 |
- Facial inconsistencies
|
67 |
- Unnatural movements
|
68 |
- Lighting issues
|
69 |
- Texture anomalies
|
70 |
- Edge artifacts
|
71 |
- Blending problems
|
72 |
-
|
73 |
-
**Model**: Fine-tuned Llama 3.2 Vision
|
74 |
-
**Creator**: [Saakshi Gupta](https://huggingface.co/saakshigupta)
|
75 |
""")
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
# Function to fix cross-attention masks
|
78 |
def fix_cross_attention_mask(inputs):
|
79 |
if 'cross_attention_mask' in inputs and 0 in inputs['cross_attention_mask'].shape:
|
@@ -87,8 +432,8 @@ def fix_cross_attention_mask(inputs):
|
|
87 |
|
88 |
# Load model function
|
89 |
@st.cache_resource
|
90 |
-
def
|
91 |
-
with st.spinner("Loading model... This may take a few minutes. Please be patient..."):
|
92 |
try:
|
93 |
# Check for GPU
|
94 |
has_gpu = check_gpu()
|
@@ -113,17 +458,18 @@ def load_model():
|
|
113 |
return None, None
|
114 |
|
115 |
# Analyze image function
|
116 |
-
def
|
117 |
-
#
|
118 |
if custom_instruction.strip():
|
119 |
-
full_prompt = f"{question}\n\
|
120 |
else:
|
121 |
-
full_prompt = question
|
122 |
|
123 |
-
# Format the message
|
124 |
messages = [
|
125 |
{"role": "user", "content": [
|
126 |
-
{"type": "image"},
|
|
|
127 |
{"type": "text", "text": full_prompt}
|
128 |
]}
|
129 |
]
|
@@ -133,7 +479,7 @@ def analyze_image(image, question, model, tokenizer, temperature=0.7, max_tokens
|
|
133 |
|
134 |
# Process with image
|
135 |
inputs = tokenizer(
|
136 |
-
image,
|
137 |
input_text,
|
138 |
add_special_tokens=False,
|
139 |
return_tensors="pt",
|
@@ -143,7 +489,7 @@ def analyze_image(image, question, model, tokenizer, temperature=0.7, max_tokens
|
|
143 |
inputs = fix_cross_attention_mask(inputs)
|
144 |
|
145 |
# Generate response
|
146 |
-
with st.spinner("
|
147 |
with torch.no_grad():
|
148 |
output_ids = model.generate(
|
149 |
**inputs,
|
@@ -166,46 +512,137 @@ def analyze_image(image, question, model, tokenizer, temperature=0.7, max_tokens
|
|
166 |
|
167 |
# Main app
|
168 |
def main():
|
169 |
-
# Create
|
170 |
-
if '
|
171 |
-
st.session_state.
|
172 |
-
st.session_state.
|
|
|
|
|
|
|
|
|
173 |
st.session_state.tokenizer = None
|
174 |
|
175 |
-
#
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
st.
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
else:
|
185 |
-
st.
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
# Image upload section
|
190 |
-
st.
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
st.session_state.tokenizer,
|
210 |
temperature=temperature,
|
211 |
max_tokens=max_tokens,
|
@@ -235,12 +672,14 @@ def main():
|
|
235 |
# Just display the whole result
|
236 |
st.subheader("Analysis Result")
|
237 |
st.markdown(result)
|
|
|
|
|
238 |
else:
|
239 |
-
st.warning("β οΈ Please load the
|
240 |
|
241 |
# Footer
|
242 |
st.markdown("---")
|
243 |
-
st.caption("Deepfake Image Analyzer")
|
244 |
|
245 |
if __name__ == "__main__":
|
246 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
from torchvision import transforms
|
6 |
+
from transformers import CLIPModel
|
7 |
+
from transformers.models.clip import CLIPModel
|
8 |
from PIL import Image
|
9 |
+
import numpy as np
|
10 |
import io
|
11 |
+
import base64
|
12 |
+
import cv2
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
from peft import PeftModel
|
15 |
from unsloth import FastVisionModel
|
|
|
16 |
import os
|
17 |
+
import tempfile
|
18 |
+
import warnings
|
19 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
20 |
|
21 |
# App title and description
|
22 |
st.set_page_config(
|
|
|
26 |
)
|
27 |
|
28 |
# Main title and description
|
29 |
+
st.title("Advanced Deepfake Image Analyzer")
|
30 |
+
st.markdown("Analyze images for deepfake manipulation with multi-stage analysis")
|
31 |
|
32 |
# Check for GPU availability
|
33 |
def check_gpu():
|
|
|
65 |
# Custom instruction text area in sidebar
|
66 |
custom_instruction = st.sidebar.text_area(
|
67 |
"Custom Instructions (Advanced)",
|
68 |
+
value="Focus on analyzing the highlighted regions from the GradCAM visualization. Examine facial inconsistencies, lighting irregularities, and other artifacts visible in the heat map.",
|
69 |
+
help="Add specific instructions for the LLM analysis"
|
70 |
)
|
71 |
|
72 |
# About section in sidebar
|
73 |
st.sidebar.markdown("---")
|
74 |
st.sidebar.subheader("About")
|
75 |
st.sidebar.markdown("""
|
76 |
+
This analyzer performs multi-stage detection:
|
77 |
+
1. **Initial Detection**: CLIP-based classifier
|
78 |
+
2. **GradCAM Visualization**: Highlights suspicious regions
|
79 |
+
3. **LLM Analysis**: Fine-tuned Llama 3.2 Vision provides detailed explanations
|
80 |
+
|
81 |
+
The system looks for:
|
82 |
- Facial inconsistencies
|
83 |
- Unnatural movements
|
84 |
- Lighting issues
|
85 |
- Texture anomalies
|
86 |
- Edge artifacts
|
87 |
- Blending problems
|
|
|
|
|
|
|
88 |
""")
|
89 |
|
90 |
+
# ----- GradCAM Implementation -----
|
91 |
+
|
92 |
+
class ImageDataset(torch.utils.data.Dataset):
|
93 |
+
def __init__(self, image, transform=None, face_only=True, dataset_name=None):
|
94 |
+
self.image = image
|
95 |
+
self.transform = transform
|
96 |
+
self.face_only = face_only
|
97 |
+
self.dataset_name = dataset_name
|
98 |
+
# Load face detector
|
99 |
+
self.face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
100 |
+
|
101 |
+
def __len__(self):
|
102 |
+
return 1 # Only one image
|
103 |
+
|
104 |
+
def detect_face(self, image_np):
|
105 |
+
"""Detect face in image and return the face region"""
|
106 |
+
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
107 |
+
faces = self.face_detector.detectMultiScale(gray, 1.1, 5)
|
108 |
+
|
109 |
+
# If no face is detected, use the whole image
|
110 |
+
if len(faces) == 0:
|
111 |
+
st.info("No face detected, using whole image for analysis")
|
112 |
+
h, w = image_np.shape[:2]
|
113 |
+
return (0, 0, w, h), image_np
|
114 |
+
|
115 |
+
# Get the largest face
|
116 |
+
if len(faces) > 1:
|
117 |
+
# Choose the largest face by area
|
118 |
+
areas = [w*h for (x, y, w, h) in faces]
|
119 |
+
largest_idx = np.argmax(areas)
|
120 |
+
x, y, w, h = faces[largest_idx]
|
121 |
+
else:
|
122 |
+
x, y, w, h = faces[0]
|
123 |
+
|
124 |
+
# Add padding around the face (5% on each side)
|
125 |
+
padding_x = int(w * 0.05)
|
126 |
+
padding_y = int(h * 0.05)
|
127 |
+
|
128 |
+
# Ensure padding doesn't go outside image bounds
|
129 |
+
x1 = max(0, x - padding_x)
|
130 |
+
y1 = max(0, y - padding_y)
|
131 |
+
x2 = min(image_np.shape[1], x + w + padding_x)
|
132 |
+
y2 = min(image_np.shape[0], y + h + padding_y)
|
133 |
+
|
134 |
+
# Extract the face region
|
135 |
+
face_img = image_np[y1:y2, x1:x2]
|
136 |
+
|
137 |
+
return (x1, y1, x2-x1, y2-y1), face_img
|
138 |
+
|
139 |
+
def __getitem__(self, idx):
|
140 |
+
image_np = np.array(self.image)
|
141 |
+
label = 0 # Default label; will be overridden by prediction
|
142 |
+
|
143 |
+
# Store original image for visualization
|
144 |
+
original_image = self.image.copy()
|
145 |
+
|
146 |
+
# Detect face if required
|
147 |
+
if self.face_only:
|
148 |
+
face_box, face_img_np = self.detect_face(image_np)
|
149 |
+
face_img = Image.fromarray(face_img_np)
|
150 |
+
|
151 |
+
# Apply transform to face image
|
152 |
+
if self.transform:
|
153 |
+
face_tensor = self.transform(face_img)
|
154 |
+
else:
|
155 |
+
face_tensor = transforms.ToTensor()(face_img)
|
156 |
+
|
157 |
+
return face_tensor, label, "uploaded_image", original_image, face_box, self.dataset_name
|
158 |
+
else:
|
159 |
+
# Process the whole image
|
160 |
+
if self.transform:
|
161 |
+
image_tensor = self.transform(self.image)
|
162 |
+
else:
|
163 |
+
image_tensor = transforms.ToTensor()(self.image)
|
164 |
+
|
165 |
+
return image_tensor, label, "uploaded_image", original_image, None, self.dataset_name
|
166 |
+
|
167 |
+
class GradCAM:
|
168 |
+
def __init__(self, model, target_layer):
|
169 |
+
self.model = model
|
170 |
+
self.target_layer = target_layer
|
171 |
+
self.gradients = None
|
172 |
+
self.activations = None
|
173 |
+
self._register_hooks()
|
174 |
+
|
175 |
+
def _register_hooks(self):
|
176 |
+
def forward_hook(module, input, output):
|
177 |
+
if isinstance(output, tuple):
|
178 |
+
self.activations = output[0]
|
179 |
+
else:
|
180 |
+
self.activations = output
|
181 |
+
|
182 |
+
def backward_hook(module, grad_in, grad_out):
|
183 |
+
if isinstance(grad_out, tuple):
|
184 |
+
self.gradients = grad_out[0]
|
185 |
+
else:
|
186 |
+
self.gradients = grad_out
|
187 |
+
|
188 |
+
layer = dict([*self.model.named_modules()])[self.target_layer]
|
189 |
+
layer.register_forward_hook(forward_hook)
|
190 |
+
layer.register_backward_hook(backward_hook)
|
191 |
+
|
192 |
+
def generate(self, input_tensor, class_idx):
|
193 |
+
self.model.zero_grad()
|
194 |
+
|
195 |
+
try:
|
196 |
+
# Use only the vision part of the model for gradient calculation
|
197 |
+
vision_outputs = self.model.vision_model(pixel_values=input_tensor)
|
198 |
+
|
199 |
+
# Get the pooler output
|
200 |
+
features = vision_outputs.pooler_output
|
201 |
+
|
202 |
+
# Create a dummy gradient for the feature based on the class idx
|
203 |
+
one_hot = torch.zeros_like(features)
|
204 |
+
one_hot[0, class_idx] = 1
|
205 |
+
|
206 |
+
# Manually backpropagate
|
207 |
+
features.backward(gradient=one_hot)
|
208 |
+
|
209 |
+
# Check for None values
|
210 |
+
if self.gradients is None or self.activations is None:
|
211 |
+
st.warning("Warning: Gradients or activations are None. Using fallback CAM.")
|
212 |
+
return np.ones((14, 14), dtype=np.float32) * 0.5
|
213 |
+
|
214 |
+
# Process gradients and activations for transformer-based model
|
215 |
+
gradients = self.gradients.cpu().detach().numpy()
|
216 |
+
activations = self.activations.cpu().detach().numpy()
|
217 |
+
|
218 |
+
if len(activations.shape) == 3: # [batch, sequence_length, hidden_dim]
|
219 |
+
seq_len = activations.shape[1]
|
220 |
+
|
221 |
+
# CLIP ViT typically has 196 patch tokens (14Γ14) + 1 class token = 197
|
222 |
+
if seq_len >= 197:
|
223 |
+
# Skip the class token (first token) and reshape the patch tokens into a square
|
224 |
+
patch_tokens = activations[0, 1:197, :] # Remove the class token
|
225 |
+
# Take the mean across the hidden dimension
|
226 |
+
token_importance = np.mean(np.abs(patch_tokens), axis=1)
|
227 |
+
# Reshape to the expected grid size (14Γ14 for CLIP ViT)
|
228 |
+
cam = token_importance.reshape(14, 14)
|
229 |
+
else:
|
230 |
+
# Try to find factors close to a square
|
231 |
+
side_len = int(np.sqrt(seq_len))
|
232 |
+
# Use the mean across features as importance
|
233 |
+
token_importance = np.mean(np.abs(activations[0]), axis=1)
|
234 |
+
# Create as square-like shape as possible
|
235 |
+
cam = np.zeros((side_len, side_len))
|
236 |
+
# Fill the cam with available values
|
237 |
+
flat_cam = cam.flatten()
|
238 |
+
flat_cam[:min(len(token_importance), len(flat_cam))] = token_importance[:min(len(token_importance), len(flat_cam))]
|
239 |
+
cam = flat_cam.reshape(side_len, side_len)
|
240 |
+
else:
|
241 |
+
# Fallback
|
242 |
+
st.info("Using fallback CAM shape (14x14)")
|
243 |
+
cam = np.ones((14, 14), dtype=np.float32) * 0.5 # Default fallback
|
244 |
+
|
245 |
+
# Ensure we have valid values
|
246 |
+
cam = np.maximum(cam, 0)
|
247 |
+
if np.max(cam) > 0:
|
248 |
+
cam = cam / np.max(cam)
|
249 |
+
|
250 |
+
return cam
|
251 |
+
|
252 |
+
except Exception as e:
|
253 |
+
st.error(f"Error in GradCAM.generate: {str(e)}")
|
254 |
+
return np.ones((14, 14), dtype=np.float32) * 0.5
|
255 |
+
|
256 |
+
def overlay_cam_on_image(image, cam, face_box=None, alpha=0.5):
|
257 |
+
"""Overlay the CAM on the image"""
|
258 |
+
if face_box is not None:
|
259 |
+
x, y, w, h = face_box
|
260 |
+
# Create a mask for the entire image (all zeros initially)
|
261 |
+
img_np = np.array(image)
|
262 |
+
full_h, full_w = img_np.shape[:2]
|
263 |
+
full_cam = np.zeros((full_h, full_w), dtype=np.float32)
|
264 |
+
|
265 |
+
# Resize CAM to match face region
|
266 |
+
face_cam = cv2.resize(cam, (w, h))
|
267 |
+
|
268 |
+
# Copy the face CAM into the full image CAM at the face position
|
269 |
+
full_cam[y:y+h, x:x+w] = face_cam
|
270 |
+
|
271 |
+
# Convert full CAM to image
|
272 |
+
cam_resized = Image.fromarray((full_cam * 255).astype(np.uint8))
|
273 |
+
cam_colormap = plt.cm.jet(np.array(cam_resized) / 255.0)[:, :, :3] # Apply colormap
|
274 |
+
cam_colormap = (cam_colormap * 255).astype(np.uint8)
|
275 |
+
else:
|
276 |
+
# Resize CAM to match image dimensions
|
277 |
+
img_np = np.array(image)
|
278 |
+
h, w = img_np.shape[:2]
|
279 |
+
cam_resized = cv2.resize(cam, (w, h))
|
280 |
+
|
281 |
+
# Apply colormap
|
282 |
+
cam_colormap = plt.cm.jet(cam_resized)[:, :, :3] # Apply colormap
|
283 |
+
cam_colormap = (cam_colormap * 255).astype(np.uint8)
|
284 |
+
|
285 |
+
# Blend the original image with the colormap
|
286 |
+
img_np_float = img_np.astype(float) / 255.0
|
287 |
+
cam_colormap_float = cam_colormap.astype(float) / 255.0
|
288 |
+
|
289 |
+
blended = img_np_float * (1 - alpha) + cam_colormap_float * alpha
|
290 |
+
blended = (blended * 255).astype(np.uint8)
|
291 |
+
|
292 |
+
return Image.fromarray(blended)
|
293 |
+
|
294 |
+
def save_comparison(image, cam, overlay, face_box=None):
|
295 |
+
"""Create a side-by-side comparison of the original, CAM, and overlay"""
|
296 |
+
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
|
297 |
+
|
298 |
+
# Original Image
|
299 |
+
axes[0].imshow(image)
|
300 |
+
axes[0].set_title("Original")
|
301 |
+
if face_box is not None:
|
302 |
+
x, y, w, h = face_box
|
303 |
+
rect = plt.Rectangle((x, y), w, h, edgecolor='lime', linewidth=2, fill=False)
|
304 |
+
axes[0].add_patch(rect)
|
305 |
+
axes[0].axis("off")
|
306 |
+
|
307 |
+
# CAM
|
308 |
+
if face_box is not None:
|
309 |
+
# Create a full image CAM that highlights only the face
|
310 |
+
img_np = np.array(image)
|
311 |
+
h, w = img_np.shape[:2]
|
312 |
+
full_cam = np.zeros((h, w))
|
313 |
+
|
314 |
+
x, y, fw, fh = face_box
|
315 |
+
# Resize CAM to face size
|
316 |
+
face_cam = cv2.resize(cam, (fw, fh))
|
317 |
+
# Place it in the right position
|
318 |
+
full_cam[y:y+fh, x:x+fw] = face_cam
|
319 |
+
axes[1].imshow(full_cam, cmap="jet")
|
320 |
+
else:
|
321 |
+
cam_resized = cv2.resize(cam, (image.width, image.height))
|
322 |
+
axes[1].imshow(cam_resized, cmap="jet")
|
323 |
+
axes[1].set_title("CAM")
|
324 |
+
axes[1].axis("off")
|
325 |
+
|
326 |
+
# Overlay
|
327 |
+
axes[2].imshow(overlay)
|
328 |
+
axes[2].set_title("Overlay")
|
329 |
+
axes[2].axis("off")
|
330 |
+
|
331 |
+
plt.tight_layout()
|
332 |
+
|
333 |
+
# Convert plot to PIL Image for Streamlit display
|
334 |
+
buf = io.BytesIO()
|
335 |
+
plt.savefig(buf, format="png", bbox_inches="tight")
|
336 |
+
plt.close()
|
337 |
+
buf.seek(0)
|
338 |
+
return Image.open(buf)
|
339 |
+
|
340 |
+
# Function to load GradCAM CLIP model
|
341 |
+
@st.cache_resource
|
342 |
+
def load_clip_model():
|
343 |
+
with st.spinner("Loading CLIP model for GradCAM..."):
|
344 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
|
345 |
+
|
346 |
+
# Apply a simple classification head
|
347 |
+
model.classification_head = nn.Linear(1024, 2)
|
348 |
+
model.classification_head.weight.data.normal_(mean=0.0, std=0.02)
|
349 |
+
model.classification_head.bias.data.zero_()
|
350 |
+
|
351 |
+
model.eval()
|
352 |
+
return model
|
353 |
+
|
354 |
+
def get_target_layer_clip(model):
|
355 |
+
"""Get the target layer for GradCAM"""
|
356 |
+
return "vision_model.encoder.layers.23"
|
357 |
+
|
358 |
+
def process_image_with_gradcam(image, model, device, pred_class):
|
359 |
+
"""Process an image with GradCAM"""
|
360 |
+
# Set up transformations
|
361 |
+
transform = transforms.Compose([
|
362 |
+
transforms.Resize((224, 224)),
|
363 |
+
transforms.ToTensor(),
|
364 |
+
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]),
|
365 |
+
])
|
366 |
+
|
367 |
+
# Create dataset for the single image
|
368 |
+
dataset = ImageDataset(image, transform=transform, face_only=True)
|
369 |
+
|
370 |
+
# Custom collate function
|
371 |
+
def custom_collate(batch):
|
372 |
+
tensors = [item[0] for item in batch]
|
373 |
+
labels = [item[1] for item in batch]
|
374 |
+
paths = [item[2] for item in batch]
|
375 |
+
images = [item[3] for item in batch]
|
376 |
+
face_boxes = [item[4] for item in batch]
|
377 |
+
dataset_names = [item[5] for item in batch]
|
378 |
+
|
379 |
+
tensors = torch.stack(tensors)
|
380 |
+
labels = torch.tensor(labels)
|
381 |
+
|
382 |
+
return tensors, labels, paths, images, face_boxes, dataset_names
|
383 |
+
|
384 |
+
# Create dataloader
|
385 |
+
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, collate_fn=custom_collate)
|
386 |
+
|
387 |
+
# Extract the batch
|
388 |
+
for batch in dataloader:
|
389 |
+
input_tensor, label, img_paths, original_images, face_boxes, dataset_names = batch
|
390 |
+
original_image = original_images[0]
|
391 |
+
face_box = face_boxes[0]
|
392 |
+
|
393 |
+
# Move tensors and model to device
|
394 |
+
input_tensor = input_tensor.to(device)
|
395 |
+
model = model.to(device)
|
396 |
+
|
397 |
+
try:
|
398 |
+
# Create GradCAM extractor
|
399 |
+
target_layer = get_target_layer_clip(model)
|
400 |
+
cam_extractor = GradCAM(model, target_layer)
|
401 |
+
|
402 |
+
# Generate CAM
|
403 |
+
cam = cam_extractor.generate(input_tensor, pred_class)
|
404 |
+
|
405 |
+
# Create visualizations
|
406 |
+
overlay = overlay_cam_on_image(original_image, cam, face_box)
|
407 |
+
comparison = save_comparison(original_image, cam, overlay, face_box)
|
408 |
+
|
409 |
+
# Return results
|
410 |
+
return cam, overlay, comparison, face_box
|
411 |
+
|
412 |
+
except Exception as e:
|
413 |
+
st.error(f"Error processing image with GradCAM: {str(e)}")
|
414 |
+
# Return default values
|
415 |
+
default_cam = np.ones((14, 14), dtype=np.float32) * 0.5
|
416 |
+
overlay = overlay_cam_on_image(original_image, default_cam, face_box)
|
417 |
+
comparison = save_comparison(original_image, default_cam, overlay, face_box)
|
418 |
+
return default_cam, overlay, comparison, face_box
|
419 |
+
|
420 |
+
# ----- Fine-tuned Vision LLM -----
|
421 |
+
|
422 |
# Function to fix cross-attention masks
|
423 |
def fix_cross_attention_mask(inputs):
|
424 |
if 'cross_attention_mask' in inputs and 0 in inputs['cross_attention_mask'].shape:
|
|
|
432 |
|
433 |
# Load model function
|
434 |
@st.cache_resource
|
435 |
+
def load_llm_model():
|
436 |
+
with st.spinner("Loading LLM vision model... This may take a few minutes. Please be patient..."):
|
437 |
try:
|
438 |
# Check for GPU
|
439 |
has_gpu = check_gpu()
|
|
|
458 |
return None, None
|
459 |
|
460 |
# Analyze image function
|
461 |
+
def analyze_image_with_llm(image, gradcam_overlay, face_box, pred_label, confidence, question, model, tokenizer, temperature=0.7, max_tokens=500, custom_instruction=""):
|
462 |
+
# Create a prompt that includes GradCAM information
|
463 |
if custom_instruction.strip():
|
464 |
+
full_prompt = f"{question}\n\nThe image has been processed with GradCAM and classified as {pred_label} with confidence {confidence:.2f}. Focus on the highlighted regions in red/yellow which show the areas the detection model found suspicious.\n\n{custom_instruction}"
|
465 |
else:
|
466 |
+
full_prompt = f"{question}\n\nThe image has been processed with GradCAM and classified as {pred_label} with confidence {confidence:.2f}. Focus on the highlighted regions in red/yellow which show the areas the detection model found suspicious."
|
467 |
|
468 |
+
# Format the message to include both the original image and the GradCAM visualization
|
469 |
messages = [
|
470 |
{"role": "user", "content": [
|
471 |
+
{"type": "image", "image": image}, # Original image
|
472 |
+
{"type": "image", "image": gradcam_overlay}, # GradCAM overlay
|
473 |
{"type": "text", "text": full_prompt}
|
474 |
]}
|
475 |
]
|
|
|
479 |
|
480 |
# Process with image
|
481 |
inputs = tokenizer(
|
482 |
+
[image, gradcam_overlay], # Send both images
|
483 |
input_text,
|
484 |
add_special_tokens=False,
|
485 |
return_tensors="pt",
|
|
|
489 |
inputs = fix_cross_attention_mask(inputs)
|
490 |
|
491 |
# Generate response
|
492 |
+
with st.spinner("Generating detailed analysis... (this may take 15-30 seconds)"):
|
493 |
with torch.no_grad():
|
494 |
output_ids = model.generate(
|
495 |
**inputs,
|
|
|
512 |
|
513 |
# Main app
|
514 |
def main():
|
515 |
+
# Create placeholders for model state
|
516 |
+
if 'clip_model_loaded' not in st.session_state:
|
517 |
+
st.session_state.clip_model_loaded = False
|
518 |
+
st.session_state.clip_model = None
|
519 |
+
|
520 |
+
if 'llm_model_loaded' not in st.session_state:
|
521 |
+
st.session_state.llm_model_loaded = False
|
522 |
+
st.session_state.llm_model = None
|
523 |
st.session_state.tokenizer = None
|
524 |
|
525 |
+
# Create expanders for each stage
|
526 |
+
with st.expander("Stage 1: Model Loading", expanded=True):
|
527 |
+
# Button for loading CLIP model
|
528 |
+
clip_col, llm_col = st.columns(2)
|
529 |
+
|
530 |
+
with clip_col:
|
531 |
+
if not st.session_state.clip_model_loaded:
|
532 |
+
if st.button("π₯ Load CLIP Model for Detection", type="primary"):
|
533 |
+
# Load CLIP model
|
534 |
+
model = load_clip_model()
|
535 |
+
if model is not None:
|
536 |
+
st.session_state.clip_model = model
|
537 |
+
st.session_state.clip_model_loaded = True
|
538 |
+
st.success("β
CLIP model loaded successfully!")
|
539 |
+
else:
|
540 |
+
st.error("β Failed to load CLIP model.")
|
541 |
else:
|
542 |
+
st.success("β
CLIP model loaded and ready!")
|
543 |
+
|
544 |
+
with llm_col:
|
545 |
+
if not st.session_state.llm_model_loaded:
|
546 |
+
if st.button("π₯ Load Vision LLM for Analysis", type="primary"):
|
547 |
+
# Load LLM model
|
548 |
+
model, tokenizer = load_llm_model()
|
549 |
+
if model is not None and tokenizer is not None:
|
550 |
+
st.session_state.llm_model = model
|
551 |
+
st.session_state.tokenizer = tokenizer
|
552 |
+
st.session_state.llm_model_loaded = True
|
553 |
+
st.success("β
Vision LLM loaded successfully!")
|
554 |
+
else:
|
555 |
+
st.error("β Failed to load Vision LLM.")
|
556 |
+
else:
|
557 |
+
st.success("β
Vision LLM loaded and ready!")
|
558 |
|
559 |
# Image upload section
|
560 |
+
with st.expander("Stage 2: Image Upload & Initial Detection", expanded=True):
|
561 |
+
st.subheader("Upload an Image")
|
562 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
563 |
+
|
564 |
+
if uploaded_file is not None:
|
565 |
+
# Display the uploaded image
|
566 |
+
image = Image.open(uploaded_file).convert("RGB")
|
567 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
568 |
+
|
569 |
+
# Detect with CLIP model if loaded
|
570 |
+
if st.session_state.clip_model_loaded:
|
571 |
+
with st.spinner("Analyzing image with CLIP model..."):
|
572 |
+
# Preprocess image for CLIP
|
573 |
+
transform = transforms.Compose([
|
574 |
+
transforms.Resize((224, 224)),
|
575 |
+
transforms.ToTensor(),
|
576 |
+
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]),
|
577 |
+
])
|
578 |
+
|
579 |
+
# Create a simple dataset for the image
|
580 |
+
dataset = ImageDataset(image, transform=transform, face_only=True)
|
581 |
+
tensor, _, _, _, face_box, _ = dataset[0]
|
582 |
+
tensor = tensor.unsqueeze(0)
|
583 |
+
|
584 |
+
# Get device
|
585 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
586 |
+
|
587 |
+
# Move model and tensor to device
|
588 |
+
model = st.session_state.clip_model.to(device)
|
589 |
+
tensor = tensor.to(device)
|
590 |
+
|
591 |
+
# Forward pass
|
592 |
+
with torch.no_grad():
|
593 |
+
outputs = model.vision_model(pixel_values=tensor).pooler_output
|
594 |
+
logits = model.classification_head(outputs)
|
595 |
+
probs = torch.softmax(logits, dim=1)[0]
|
596 |
+
pred_class = torch.argmax(probs).item()
|
597 |
+
confidence = probs[pred_class].item()
|
598 |
+
pred_label = "Fake" if pred_class == 1 else "Real"
|
599 |
+
|
600 |
+
# Display results
|
601 |
+
result_col1, result_col2 = st.columns(2)
|
602 |
+
with result_col1:
|
603 |
+
st.metric("Prediction", pred_label)
|
604 |
+
with result_col2:
|
605 |
+
st.metric("Confidence", f"{confidence:.2%}")
|
606 |
+
|
607 |
+
# GradCAM visualization
|
608 |
+
st.subheader("GradCAM Visualization")
|
609 |
+
cam, overlay, comparison, detected_face_box = process_image_with_gradcam(
|
610 |
+
image, model, device, pred_class
|
611 |
+
)
|
612 |
+
|
613 |
+
# Display GradCAM results
|
614 |
+
st.image(comparison, caption="Original | CAM | Overlay", use_column_width=True)
|
615 |
+
|
616 |
+
# Save results in session state for LLM analysis
|
617 |
+
st.session_state.current_image = image
|
618 |
+
st.session_state.current_overlay = overlay
|
619 |
+
st.session_state.current_face_box = detected_face_box
|
620 |
+
st.session_state.current_pred_label = pred_label
|
621 |
+
st.session_state.current_confidence = confidence
|
622 |
+
|
623 |
+
st.success("β
Initial detection and GradCAM visualization complete!")
|
624 |
+
else:
|
625 |
+
st.warning("β οΈ Please load the CLIP model first to perform initial detection.")
|
626 |
|
627 |
+
# LLM Analysis section
|
628 |
+
with st.expander("Stage 3: Detailed Analysis with Vision LLM", expanded=False):
|
629 |
+
if hasattr(st.session_state, 'current_image') and st.session_state.llm_model_loaded:
|
630 |
+
st.subheader("Detailed Deepfake Analysis")
|
631 |
+
|
632 |
+
# Default question with option to customize
|
633 |
+
default_question = f"This image has been classified as {st.session_state.current_pred_label}. Analyze the key features that led to this classification, focusing on the highlighted areas in the GradCAM visualization. Provide both a technical explanation for experts and a simple explanation for non-technical users."
|
634 |
+
question = st.text_area("Question/Prompt:", value=default_question, height=100)
|
635 |
+
|
636 |
+
# Analyze button
|
637 |
+
if st.button("π Perform Detailed Analysis", type="primary"):
|
638 |
+
result = analyze_image_with_llm(
|
639 |
+
st.session_state.current_image,
|
640 |
+
st.session_state.current_overlay,
|
641 |
+
st.session_state.current_face_box,
|
642 |
+
st.session_state.current_pred_label,
|
643 |
+
st.session_state.current_confidence,
|
644 |
+
question,
|
645 |
+
st.session_state.llm_model,
|
646 |
st.session_state.tokenizer,
|
647 |
temperature=temperature,
|
648 |
max_tokens=max_tokens,
|
|
|
672 |
# Just display the whole result
|
673 |
st.subheader("Analysis Result")
|
674 |
st.markdown(result)
|
675 |
+
elif not hasattr(st.session_state, 'current_image'):
|
676 |
+
st.warning("β οΈ Please upload an image and complete the initial detection first.")
|
677 |
else:
|
678 |
+
st.warning("β οΈ Please load the Vision LLM to perform detailed analysis.")
|
679 |
|
680 |
# Footer
|
681 |
st.markdown("---")
|
682 |
+
st.caption("Advanced Deepfake Image Analyzer")
|
683 |
|
684 |
if __name__ == "__main__":
|
685 |
main()
|