Spaces:
Sleeping
Sleeping
Julián Tachella
commited on
Commit
·
c472fe6
1
Parent(s):
f964bf0
test
Browse files
app.py
CHANGED
|
@@ -2,24 +2,28 @@ import gradio as gr
|
|
| 2 |
import deepinv as dinv
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
|
| 6 |
def pil_to_torch(image):
|
| 7 |
image = np.array(image)
|
| 8 |
image = image.transpose((2, 0, 1))
|
| 9 |
-
image = torch.tensor(image).float()
|
| 10 |
return image.unsqueeze(0)
|
| 11 |
|
|
|
|
| 12 |
def torch_to_pil(image):
|
| 13 |
-
image = image.squeeze(0)
|
| 14 |
-
image = image.numpy()
|
| 15 |
image = image.transpose((1, 2, 0))
|
|
|
|
|
|
|
| 16 |
return image
|
| 17 |
|
| 18 |
-
|
|
|
|
| 19 |
image = pil_to_torch(image)
|
| 20 |
denoiser = dinv.models.MedianFilter()
|
| 21 |
-
noisy = image + torch.randn_like(image) *
|
| 22 |
-
estimated = denoiser(image,
|
| 23 |
return torch_to_pil(noisy), torch_to_pil(estimated)
|
| 24 |
|
| 25 |
|
|
@@ -28,10 +32,12 @@ output_images = gr.Image(label='Denoised Image')
|
|
| 28 |
noise_image = gr.Image(label='Noisy Image')
|
| 29 |
input_image_output = gr.Image(label='Input Image')
|
| 30 |
|
|
|
|
|
|
|
| 31 |
|
| 32 |
demo = gr.Interface(
|
| 33 |
image_mod,
|
| 34 |
-
inputs=input_image,
|
| 35 |
outputs=[noise_image, output_images],
|
| 36 |
title="Image Denoising with DeepInverse",
|
| 37 |
)
|
|
|
|
| 2 |
import deepinv as dinv
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
+
import PIL.Image
|
| 6 |
|
| 7 |
def pil_to_torch(image):
|
| 8 |
image = np.array(image)
|
| 9 |
image = image.transpose((2, 0, 1))
|
| 10 |
+
image = torch.tensor(image).float() / 255
|
| 11 |
return image.unsqueeze(0)
|
| 12 |
|
| 13 |
+
|
| 14 |
def torch_to_pil(image):
|
| 15 |
+
image = image.squeeze(0).cpu().detach().numpy()
|
|
|
|
| 16 |
image = image.transpose((1, 2, 0))
|
| 17 |
+
image = (image * 255).astype(np.uint8)
|
| 18 |
+
image = PIL.Image.fromarray(image)
|
| 19 |
return image
|
| 20 |
|
| 21 |
+
|
| 22 |
+
def image_mod(image, noise_level):
|
| 23 |
image = pil_to_torch(image)
|
| 24 |
denoiser = dinv.models.MedianFilter()
|
| 25 |
+
noisy = image + torch.randn_like(image) * noise_level
|
| 26 |
+
estimated = denoiser(image, noise_level)
|
| 27 |
return torch_to_pil(noisy), torch_to_pil(estimated)
|
| 28 |
|
| 29 |
|
|
|
|
| 32 |
noise_image = gr.Image(label='Noisy Image')
|
| 33 |
input_image_output = gr.Image(label='Input Image')
|
| 34 |
|
| 35 |
+
noise_levels = gr.Dropdown(choices=[0.1, 0.2, 0.3, 0.4, 0.5], value=0.1, label='Noise Level')
|
| 36 |
+
|
| 37 |
|
| 38 |
demo = gr.Interface(
|
| 39 |
image_mod,
|
| 40 |
+
inputs=[input_image, noise_levels],
|
| 41 |
outputs=[noise_image, output_images],
|
| 42 |
title="Image Denoising with DeepInverse",
|
| 43 |
)
|