Spaces:
Runtime error
Runtime error
| import functools | |
| import omegaconf | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| # FIXME | |
| class PatchGANDiscriminator(nn.Module): | |
| """Defines a PatchGAN discriminator""" | |
| def __init__(self, hp, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d): | |
| """Construct a PatchGAN discriminator | |
| Parameters: | |
| ndf (int) -- the number of filters in the last conv layer | |
| n_layers (int) -- the number of conv layers in the discriminator | |
| norm_layer -- normalization layer | |
| """ | |
| super().__init__() | |
| self.hp = hp | |
| in_channels = hp.in_channels | |
| if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters | |
| use_bias = norm_layer.func == nn.InstanceNorm2d | |
| else: | |
| use_bias = norm_layer == nn.InstanceNorm2d | |
| kw = 4 | |
| padw = 1 | |
| sequence = [nn.Conv2d(in_channels, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] | |
| nf_mult = 1 | |
| nf_mult_prev = 1 | |
| for n in range(1, n_layers): # gradually increase the number of filters | |
| nf_mult_prev = nf_mult | |
| nf_mult = min(2 ** n, 8) | |
| sequence += [ | |
| nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), | |
| norm_layer(ndf * nf_mult), | |
| nn.LeakyReLU(0.2, True) | |
| ] | |
| nf_mult_prev = nf_mult | |
| nf_mult = min(2 ** n_layers, 8) | |
| sequence += [ | |
| nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), | |
| norm_layer(ndf * nf_mult), | |
| nn.LeakyReLU(0.2, True) | |
| ] | |
| sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] | |
| self.model = nn.Sequential(*sequence) | |
| def forward(self, x): | |
| return self.model(x) | |