Spaces:
Runtime error
Runtime error
| import hashlib | |
| import os | |
| import urllib | |
| import warnings | |
| from tqdm import tqdm | |
| CACHE_DIR = os.getenv("AUDIOLDM_CACHE_DIR", "~/.cache") | |
| _RN50 = dict( | |
| openai="https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", | |
| yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt", | |
| cc12m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt", | |
| ) | |
| _RN50_quickgelu = dict( | |
| openai="https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", | |
| yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt", | |
| cc12m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt", | |
| ) | |
| _RN101 = dict( | |
| openai="https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", | |
| yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt", | |
| ) | |
| _RN101_quickgelu = dict( | |
| openai="https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", | |
| yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt", | |
| ) | |
| _RN50x4 = dict( | |
| openai="https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", | |
| ) | |
| _RN50x16 = dict( | |
| openai="https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt", | |
| ) | |
| _RN50x64 = dict( | |
| openai="https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt", | |
| ) | |
| _VITB32 = dict( | |
| openai="https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", | |
| laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt", | |
| laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt", | |
| laion400m_avg="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_avg-8a00ab3c.pt", | |
| ) | |
| _VITB32_quickgelu = dict( | |
| openai="https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", | |
| laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt", | |
| laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt", | |
| laion400m_avg="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_avg-8a00ab3c.pt", | |
| ) | |
| _VITB16 = dict( | |
| openai="https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", | |
| ) | |
| _VITL14 = dict( | |
| openai="https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", | |
| ) | |
| _PRETRAINED = { | |
| "RN50": _RN50, | |
| "RN50-quickgelu": _RN50_quickgelu, | |
| "RN101": _RN101, | |
| "RN101-quickgelu": _RN101_quickgelu, | |
| "RN50x4": _RN50x4, | |
| "RN50x16": _RN50x16, | |
| "ViT-B-32": _VITB32, | |
| "ViT-B-32-quickgelu": _VITB32_quickgelu, | |
| "ViT-B-16": _VITB16, | |
| "ViT-L-14": _VITL14, | |
| } | |
| def list_pretrained(as_str: bool = False): | |
| """returns list of pretrained models | |
| Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True | |
| """ | |
| return [ | |
| ":".join([k, t]) if as_str else (k, t) | |
| for k in _PRETRAINED.keys() | |
| for t in _PRETRAINED[k].keys() | |
| ] | |
| def list_pretrained_tag_models(tag: str): | |
| """return all models having the specified pretrain tag""" | |
| models = [] | |
| for k in _PRETRAINED.keys(): | |
| if tag in _PRETRAINED[k]: | |
| models.append(k) | |
| return models | |
| def list_pretrained_model_tags(model: str): | |
| """return all pretrain tags for the specified model architecture""" | |
| tags = [] | |
| if model in _PRETRAINED: | |
| tags.extend(_PRETRAINED[model].keys()) | |
| return tags | |
| def get_pretrained_url(model: str, tag: str): | |
| if model not in _PRETRAINED: | |
| return "" | |
| model_pretrained = _PRETRAINED[model] | |
| if tag not in model_pretrained: | |
| return "" | |
| return model_pretrained[tag] | |
| def download_pretrained(url: str, root: str = os.path.expanduser(f"{CACHE_DIR}/clip")): | |
| os.makedirs(root, exist_ok=True) | |
| filename = os.path.basename(url) | |
| if "openaipublic" in url: | |
| expected_sha256 = url.split("/")[-2] | |
| else: | |
| expected_sha256 = "" | |
| download_target = os.path.join(root, filename) | |
| if os.path.exists(download_target) and not os.path.isfile(download_target): | |
| raise RuntimeError(f"{download_target} exists and is not a regular file") | |
| if os.path.isfile(download_target): | |
| if expected_sha256: | |
| if ( | |
| hashlib.sha256(open(download_target, "rb").read()).hexdigest() | |
| == expected_sha256 | |
| ): | |
| return download_target | |
| else: | |
| warnings.warn( | |
| f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" | |
| ) | |
| else: | |
| return download_target | |
| with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: | |
| with tqdm( | |
| total=int(source.info().get("Content-Length")), | |
| ncols=80, | |
| unit="iB", | |
| unit_scale=True, | |
| ) as loop: | |
| while True: | |
| buffer = source.read(8192) | |
| if not buffer: | |
| break | |
| output.write(buffer) | |
| loop.update(len(buffer)) | |
| if ( | |
| expected_sha256 | |
| and hashlib.sha256(open(download_target, "rb").read()).hexdigest() | |
| != expected_sha256 | |
| ): | |
| raise RuntimeError( | |
| f"Model has been downloaded but the SHA256 checksum does not not match" | |
| ) | |
| return download_target | |