Spaces:
Runtime error
Runtime error
| import json | |
| import logging | |
| import math | |
| import os | |
| import time | |
| from contextlib import suppress | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| try: | |
| import wandb | |
| except ImportError: | |
| wandb = None | |
| from open_clip import LPLoss, LPMetrics, lp_gather_features | |
| from open_clip.utils import do_mixup, get_mix_lambda | |
| from .distributed import is_master | |
| from .zero_shot import zero_shot_eval | |
| class AverageMeter(object): | |
| """Computes and stores the average and current value""" | |
| def __init__(self): | |
| self.reset() | |
| def reset(self): | |
| self.val = 0 | |
| self.avg = 0 | |
| self.sum = 0 | |
| self.count = 0 | |
| def update(self, val, n=1): | |
| self.val = val | |
| self.sum += val * n | |
| self.count += n | |
| self.avg = self.sum / self.count | |
| def unwrap_model(model): | |
| if hasattr(model, "module"): | |
| return model.module | |
| else: | |
| return model | |
| def train_one_epoch( | |
| model, | |
| data, | |
| epoch, | |
| optimizer, | |
| scaler, | |
| scheduler, | |
| args, | |
| tb_writer=None, | |
| extra_suffix="", | |
| ): | |
| device = torch.device(args.device) | |
| autocast = torch.cuda.amp.autocast if args.precision == "amp" else suppress | |
| model.train() | |
| loss = LPLoss(args.lp_loss) | |
| dataloader, sampler = data["train"].dataloader, data["train"].sampler | |
| if args.distributed and sampler is not None: | |
| sampler.set_epoch(epoch) | |
| num_batches_per_epoch = dataloader.num_batches | |
| sample_digits = math.ceil(math.log(dataloader.num_samples + 1, 10)) | |
| # for toy dataset | |
| if args.dataset_type == "toy": | |
| dataloader.dataset.generate_queue() | |
| loss_m = AverageMeter() | |
| batch_time_m = AverageMeter() | |
| data_time_m = AverageMeter() | |
| end = time.time() | |
| for i, batch in enumerate(dataloader): | |
| step = num_batches_per_epoch * epoch + i | |
| if isinstance(scheduler, dict): | |
| for s in scheduler.values(): | |
| s(step) | |
| else: | |
| scheduler(step) | |
| audio = batch # contains mel_spec, wavform, and longer list | |
| class_label = batch["class_label"] | |
| # audio = audio.to(device=device, non_blocking=True) | |
| class_label = class_label.to(device=device, non_blocking=True) | |
| if args.mixup: | |
| # https://github.com/RetroCirce/HTS-Audio-Transformer/blob/main/utils.py#L146 | |
| mix_lambda = torch.from_numpy( | |
| get_mix_lambda(0.5, len(audio["waveform"])) | |
| ).to(device) | |
| class_label = do_mixup(class_label, mix_lambda) | |
| else: | |
| mix_lambda = None | |
| data_time_m.update(time.time() - end) | |
| if isinstance(optimizer, dict): | |
| for o_ in optimizer.values(): | |
| o_.zero_grad() | |
| else: | |
| optimizer.zero_grad() | |
| with autocast(): | |
| pred = model(audio, mix_lambda=mix_lambda, device=device) | |
| total_loss = loss(pred, class_label) | |
| if isinstance(optimizer, dict): | |
| if scaler is not None: | |
| scaler.scale(total_loss).backward() | |
| for o_ in optimizer.values(): | |
| if args.horovod: | |
| o_.synchronize() | |
| scaler.unscale_(o_) | |
| with o_.skip_synchronize(): | |
| scaler.step(o_) | |
| else: | |
| scaler.step(o_) | |
| scaler.update() | |
| else: | |
| total_loss.backward() | |
| for o_ in optimizer.values(): | |
| o_.step() | |
| else: | |
| if scaler is not None: | |
| scaler.scale(total_loss).backward() | |
| if args.horovod: | |
| optimizer.synchronize() | |
| scaler.unscale_(optimizer) | |
| with optimizer.skip_synchronize(): | |
| scaler.step(optimizer) | |
| else: | |
| scaler.step(optimizer) | |
| scaler.update() | |
| else: | |
| total_loss.backward() | |
| optimizer.step() | |
| # Note: we clamp to 4.6052 = ln(100), as in the original paper. | |
| with torch.no_grad(): | |
| unwrap_model(model).clap_model.logit_scale_a.clamp_(0, math.log(100)) | |
| unwrap_model(model).clap_model.logit_scale_t.clamp_(0, math.log(100)) | |
| batch_time_m.update(time.time() - end) | |
| end = time.time() | |
| batch_count = i + 1 | |
| if is_master(args) and (i % 100 == 0 or batch_count == num_batches_per_epoch): | |
| if isinstance(audio, dict): | |
| batch_size = len(audio["waveform"]) | |
| else: | |
| batch_size = len(audio) | |
| num_samples = batch_count * batch_size * args.world_size | |
| samples_per_epoch = dataloader.num_samples | |
| percent_complete = 100.0 * batch_count / num_batches_per_epoch | |
| # NOTE loss is coarsely sampled, just master node and per log update | |
| loss_m.update(total_loss.item(), batch_size) | |
| if isinstance(optimizer, dict): | |
| logging.info( | |
| f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] " | |
| f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) " | |
| f"Data (t): {data_time_m.avg:.3f} " | |
| f"Batch (t): {batch_time_m.avg:.3f} " | |
| f"LR: {[o_.param_groups[0]['lr'] for o_ in optimizer.values()]}" | |
| ) | |
| log_data = { | |
| "loss": loss_m.val, | |
| "data_time": data_time_m.val, | |
| "batch_time": batch_time_m.val, | |
| "lr": [o_.param_groups[0]["lr"] for o_ in optimizer.values()], | |
| } | |
| else: | |
| logging.info( | |
| f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] " | |
| f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) " | |
| f"Data (t): {data_time_m.avg:.3f} " | |
| f"Batch (t): {batch_time_m.avg:.3f} " | |
| f"LR: {optimizer.param_groups[0]['lr']:5f} " | |
| ) | |
| # Save train loss / etc. Using non avg meter values as loggers have their own smoothing | |
| log_data = { | |
| "loss": loss_m.val, | |
| "data_time": data_time_m.val, | |
| "batch_time": batch_time_m.val, | |
| "lr": optimizer.param_groups[0]["lr"], | |
| } | |
| for name, val in log_data.items(): | |
| name = f"train{extra_suffix}/{name}" | |
| if tb_writer is not None: | |
| tb_writer.add_scalar(name, val, step) | |
| if args.wandb: | |
| assert wandb is not None, "Please install wandb." | |
| wandb.log({name: val, "step": step}) | |
| # resetting batch / data time meters per log window | |
| batch_time_m.reset() | |
| data_time_m.reset() | |
| # end for | |
| def evaluate(model, data, epoch, args, tb_writer=None, extra_suffix=""): | |
| metrics = {} | |
| if not args.parallel_eval: | |
| if not is_master(args): | |
| return metrics | |
| device = torch.device(args.device) | |
| model.eval() | |
| # CHANGE | |
| # zero_shot_metrics = zero_shot_eval(model, data, epoch, args) | |
| # metrics.update(zero_shot_metrics) | |
| if is_master(args): | |
| print("Evaluating...") | |
| metric_names = args.lp_metrics.split(",") | |
| eval_tool = LPMetrics(metric_names=metric_names) | |
| autocast = torch.cuda.amp.autocast if args.precision == "amp" else suppress | |
| if "val" in data and ( | |
| args.val_frequency | |
| and ((epoch % args.val_frequency) == 0 or epoch == args.epochs) | |
| ): | |
| if args.parallel_eval: | |
| dataloader, sampler = data["val"].dataloader, data["val"].sampler | |
| if args.distributed and sampler is not None: | |
| sampler.set_epoch(epoch) | |
| samples_per_val = dataloader.num_samples | |
| else: | |
| dataloader = data["val"].dataloader | |
| num_samples = 0 | |
| samples_per_val = dataloader.num_samples | |
| eval_info = {"pred": [], "target": []} | |
| with torch.no_grad(): | |
| for i, batch in enumerate(dataloader): | |
| audio = batch # contains mel_spec, wavform, and longer list | |
| class_label = batch["class_label"] | |
| # audio = audio.to(device=device, non_blocking=True) | |
| class_label = class_label.to(device=device, non_blocking=True) | |
| with autocast(): | |
| pred = model(audio, device=device) | |
| if args.parallel_eval: | |
| pred, class_label = lp_gather_features( | |
| pred, class_label, args.world_size, args.horovod | |
| ) | |
| eval_info["pred"].append(pred) | |
| eval_info["target"].append(class_label) | |
| num_samples += class_label.shape[0] | |
| if (i % 100) == 0: # and i != 0: | |
| logging.info( | |
| f"Eval Epoch: {epoch} [{num_samples} / {samples_per_val}]" | |
| ) | |
| if is_master(args): | |
| eval_info["pred"] = torch.cat(eval_info["pred"], 0).cpu() | |
| eval_info["target"] = torch.cat(eval_info["target"], 0).cpu() | |
| metric_dict = eval_tool.evaluate_mertics( | |
| eval_info["pred"], eval_info["target"] | |
| ) | |
| metrics.update(metric_dict) | |
| if "epoch" not in metrics.keys(): | |
| metrics.update({"epoch": epoch}) | |
| if is_master(args): | |
| if not metrics: | |
| return metrics | |
| logging.info( | |
| f"Eval Epoch: {epoch} " | |
| + "\n".join( | |
| ["\t".join([f"{m}: {round(metrics[m], 4):.4f}"]) for m in metrics] | |
| ) | |
| ) | |
| if args.save_logs: | |
| for name, val in metrics.items(): | |
| if tb_writer is not None: | |
| tb_writer.add_scalar(f"val{extra_suffix}/{name}", val, epoch) | |
| with open(os.path.join(args.checkpoint_path, "results.jsonl"), "a+") as f: | |
| f.write(json.dumps(metrics)) | |
| f.write("\n") | |
| if args.wandb: | |
| assert wandb is not None, "Please install wandb." | |
| for name, val in metrics.items(): | |
| wandb.log({f"val{extra_suffix}/{name}": val, "epoch": epoch}) | |
| return metrics | |
| else: | |
| return metrics | |