File size: 21,489 Bytes
a72a986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5953e8
a72a986
429321a
b5953e8
a72a986
429321a
 
 
 
58b95fb
a72a986
 
 
 
429321a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a72a986
057d703
 
 
 
 
 
 
a72a986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
429321a
 
 
 
 
 
 
 
a72a986
 
 
 
429321a
a72a986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
429321a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a72a986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
429321a
a72a986
 
429321a
 
 
 
 
 
a72a986
 
 
 
 
 
 
 
 
 
 
 
 
057d703
 
 
 
429321a
 
 
 
 
 
a72a986
 
 
 
 
429321a
 
a72a986
 
 
057d703
 
 
 
a72a986
 
 
429321a
 
 
 
 
 
 
a72a986
 
057d703
 
 
 
a72a986
 
 
 
 
429321a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# ==========================================================================
#         ____                   __       _          _____ ____ ____
#        |  _ \  ___  ___ _ __  / _| __ _| | _____  | ____/ ___/ ___|
#        | | | |/ _ \/ _ \ '_ \| |_ / _` | |/ / _ \ |  _|| |  | |  _
#        | |_| |  __/  __/ |_) |  _| (_| |   <  __/ | |__| |__| |_| |
#        |____/ \___|\___| .__/|_|  \__,_|_|\_\___| |_____\____\____|
#                        |_|
#
#                       --- Deepfake ECG Generator ---
#                https://github.com/vlbthambawita/deepfake-ecg
# ==========================================================================
#
# DeepfakeECG GUI Application
# Copyright (C) 2023-2025 by Vajira Thambawita
# Copyright (C) 2025 by Thomas Dreibholz
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Contact:
# * Vajira Thambawita <[email protected]>
# * Thomas Dreibholz <[email protected]>

import deepfakeecg
import ecg_plot
import gradio
import io
import matplotlib.pyplot as plt
import matplotlib.ticker
import random
import sys
import tempfile
import threading
import torch
import typing
import PIL


TempDirectory      = None
LastResults        = None
SelectedECGIndex   = 0


# ###### Make a unique session ID ###########################################
SessionCounterLock = threading.Lock()
SessionCounter     = 0
def generateSessionID():
   global SessionCounterLock
   global SessionCounter

   SessionCounterLock.acquire()
   SessionCounter = SessionCounter + 1
   sessionID      = SessionCounter
   SessionCounterLock.release()
   print(f'SessionID={sessionID}')

   return sessionID


# ###### Get last results ###################################################
def getLastResults() -> list:
   return LastResults


# ###### Get last result ####################################################
def getLastResult(index: int) -> torch.Tensor:
   if LastResults != None:
      return LastResults[index]
   return None


# ###### Generate ECGs ######################################################
def predict(numberOfECGs       = 1,
            # ecgLengthInSeconds = 10,
            ecgTypeString      = 'ECG-12',
            generatorModel     = 'Default',
           ) -> list:

   ecgLengthInSeconds = 10

   # ====== Set ECG type ====================================================
   ecgType = deepfakeecg.DATA_ECG12
   if ecgTypeString == 'ECG-8':
      ecgType = deepfakeecg.DATA_ECG8
   elif ecgTypeString == 'ECG-12':
      ecgType = deepfakeecg.DATA_ECG12
   else:
      sys.stderr.write(f'WARNING: Invalid ecgTypeString {ecgTypeString}, using ECG-12!\n')

   # ====== Raise Locator.MAXTICKS, if necessary ============================
   matplotlib.ticker.Locator.MAXTICKS = \
       max(1000, ecgLengthInSeconds * deepfakeecg.ECG_SAMPLING_RATE)
   # print(matplotlib.ticker.Locator.MAXTICKS)

   # ====== Generate the ECGs ===============================================
   global LastResults
   LastResults = deepfakeecg.generateDeepfakeECGs(numberOfECGs,
                                                  ecgType            = ecgType,
                                                  ecgLengthInSeconds = ecgLengthInSeconds,
                                                  ecgScaleFactor     = 6,
                                                  outputFormat       = deepfakeecg.OUTPUT_TENSOR,
                                                  showProgress       = False,
                                                  runOnDevice        = runOnDevice)

   # ====== Create a list of image/label tuples for gradio.Gallery ==========
   plotList  = []
   ecgNumber = 1
   for result in LastResults:

      # ====== Plot ECG =====================================================
      result = result.t().detach().cpu().numpy()
      # print(result)

      # ------ ECG-12 -------------------------------------------------------
      if ecgType == deepfakeecg.DATA_ECG12:
         ecg_plot.plot(result,
                       title       = 'ECG-12',
                       sample_rate = deepfakeecg.ECG_SAMPLING_RATE,
                       lead_index  = [ 'I', 'II', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'III', 'aVR', 'aVL', 'aVF' ],
                       lead_order  = [0, 1, 8, 9, 10, 11, 2, 3, 4, 5, 6, 7],
                       show_grid   = True)
      # ------ ECG-8 --------------------------------------------------------
      else:
         ecg_plot.plot(result,
                       title       = 'ECG-8',
                       sample_rate = deepfakeecg.ECG_SAMPLING_RATE,
                       lead_index  = [ 'I', 'II', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6' ],
                       lead_order  = [0, 1, 2, 3, 4, 5, 6, 7],
                       show_grid   = True)

      # ====== Generate WebP output =========================================
      imageBuffer = io.BytesIO()
      plt.savefig(imageBuffer, format = 'webp')
      plt.close()
      image = PIL.Image.open(imageBuffer)
      plotList.append( (image, f'ECG Number {ecgNumber}') )

      ecgNumber = ecgNumber + 1

   return plotList


# ###### Select ECG in the gallery ##########################################
def select(event: gradio.SelectData):
   # Get selection index from Gallery select() event:
   # https://github.com/gradio-app/gradio/issues/1976#issuecomment-1726018500

   global SelectedECGIndex
   SelectedECGIndex = event.index
   print(f'Selected #{SelectedECGIndex}!')

   # return event.value


# ###### Produce CSV file from Tensor #######################################
def dataToCSV(data, outputFileName, ecgType = deepfakeecg.DATA_ECG12) -> sys.path:

   data = generatedECG.detach().cpu().numpy()

   if ecgType == deepfakeecg.DATA_ECG8:
      header = 'Timestamp,LeadI,LeadII,V1,V2,V3,V4,V5,V6'
   elif ecgType == deepfakeecg.DATA_ECG12:
      header = 'Timestamp,LeadI,LeadII,V1,V2,V3,V4,V5,V6,LeadIII,aVL,aVR,aVF'
   else:
      raise Exception('Invalid ECG type!')

   numpy.savetxt(outputFileName, data,
                  header    = header,
                  comments  = '',
                  delimiter = ',',
                  fmt       = '%i')


# ###### Download CSV #######################################################
def downloadCSV(sessionID) -> None:
   print(f'CSV #{SelectedECGIndex}!')
   print(f"sessionID={sessionID}")

# ###### Download PDF #######################################################
def downloadPDF(sessionID) -> None:
   print(f'PDF #{SelectedECGIndex}!')
   print(f"sessionID={sessionID}")


# ###### Analyze the selected ECG ###########################################
def analyze() -> None:

   print(f'Analyze #{SelectedECGIndex}!')

   data = getLastResult(SelectedECGIndex)
   print(data)

   return None



# ###### Main program #######################################################

# ====== Initialise =========================================================
runOnDevice: typing.Literal['cpu', 'cuda'] = 'cuda' if torch.cuda.is_available() else 'cpu'
css = r"""
div {
   background-image: url("https://www.nntb.no/~dreibh/graphics/backgrounds/background-essen.png");
}

/* ###### General Settings ##############################################  */
html, body {
   height:           100%;
   padding:          0;
   margin:           0;
   font-family:      sans-serif;
   font-size:        small;
   background-color: #E3E3E3;   /* Simula background colour: #E3E3E3 */
}


/* ###### Header ########################################################  */
div.header {
   background-image: none;
   background-color: #F15D22;   /* Simula header colour: #F15D22 */
   height:           7.5%;
   display:          flex;
   justify-content:  space-between;
}

div.logo-left {
   width:            12.5%;
   float:            left;
   display:          flex;
   padding:          0% 1%;
   align-items:      center;
   background:       white;
}

div.logo-right {
   width:            12.5%;
   float:            right;
   display:          flex;
   padding:          0% 1%;
   align-items:      center;
   background:       white;
}

div.title {
   display:          flex;
   align-items:      center;
   padding:          0% 1%;
   background-image: none;
   background-color: #F15D22;   /* Simula header colour: #F15D22 */

   font-family:      "Ubuntu", sans-serif;
   font-size:        4vh;
   font-weight:      bold;
}r

img.logo-image {
   max-width:        100%;
   max-height:       100%;
}
"""


# ====== Create GUI =========================================================
with gradio.Blocks(css = css, theme = gradio.themes.Glass(secondary_hue=gradio.themes.colors.blue)) as gui:

   # ====== Unique session ID for this instance =============================
   sessionID = gradio.State(0)
   gui.load(generateSessionID, outputs = [ sessionID ])

   # ====== Header ==========================================================
   big_block = gradio.HTML("""
<div class="header">
   <div class="logo-left">
      <img class="logo-image" src="" alt="SimulaMet" height="32" />
   </div>
   <div class="title" id="title"><a href="https://ihi-search.eu/">SEARCH</a>&nbsp;Fake ECG Generator</div>
   <div class="logo-right">
      <img class="logo-image" src="" alt="NorNet" height="64" />
   </div>
</div>
""")
   gradio.Markdown('## Settings')
   with gradio.Row():
      sliderNumberOfECGs     = gradio.Slider(1, 100, label="Number of ECGs", step = 1, value = 4, interactive = True)
      # sliderLengthInSeconds = gradio.Slider(5, 60, label="Length (s)", step = 5, value = 10, interactive = True)
      dropdownType           = gradio.Dropdown( [ 'ECG-12', 'ECG-8' ], label = 'ECG Type', interactive = True)
      dropdownGeneratorModel = gradio.Dropdown( [ 'Default' ], label = 'Generator Model', interactive = True)
      with gradio.Column():
         buttonGenerate = gradio.Button("Generate ECGs!")
         buttonAnalyze  = gradio.Button("Analyze this ECG!")
         with gradio.Row():
            buttonCSV = gradio.Button("Download CSV")
            buttonPDF = gradio.Button("Download PDF")
   gradio.Markdown('## Output')
   with gradio.Row():
      outputGallery = gradio.Gallery(label = 'output', columns = [ 1 ], height = 'auto',
                                     show_label = True,
                                     preview = True)
      outputGallery.select(select)
   gradio.Markdown('## Analysis')

   # ====== Add click event handling for "Generate" button ==================
   buttonGenerate.click(predict,
                        inputs  = [ sliderNumberOfECGs,
                                    # sliderLengthInSeconds,
                                    dropdownType,
                                    dropdownGeneratorModel ],
                        outputs = [ outputGallery ]
                       )

   # ====== Add click event handling for "Analyze" button ===================
   buttonAnalyze.click(analyze)

   # ====== Add click event handling for download buttons ===================
   buttonCSV.click(downloadCSV, inputs = [ sessionID ])
   buttonPDF.click(downloadPDF, inputs = [ sessionID ])

   # ====== Run on startup ==================================================
   gui.load(predict,
            inputs  = [ sliderNumberOfECGs,
                        # sliderLengthInSeconds,
                        dropdownType,
                        dropdownGeneratorModel ],
            outputs = [ outputGallery ]
           )

# ====== Run the GUI ========================================================
if __name__ == "__main__":
   TempDirectory = tempfile.TemporaryDirectory('DeepFakeECGPlus')
   gui.launch(allowed_paths = [ TempDirectory ])
   TempDirectory.cleanup()