Proper session handling.
Browse files
app.py
CHANGED
@@ -49,10 +49,8 @@ import typing
|
|
49 |
import PIL
|
50 |
|
51 |
|
52 |
-
TempDirectory
|
53 |
-
Sessions
|
54 |
-
LastResults = None
|
55 |
-
SelectedECGIndex = 0
|
56 |
|
57 |
|
58 |
# ###### Print log message ##################################################
|
@@ -61,31 +59,15 @@ def log(logstring):
|
|
61 |
': ' + logstring + '\x1b[0m'));
|
62 |
|
63 |
|
64 |
-
# ###### Make a unique session ID ###########################################
|
65 |
-
SessionCounterLock = threading.Lock()
|
66 |
-
SessionCounter = 0
|
67 |
-
def generateSessionID():
|
68 |
-
global SessionCounterLock
|
69 |
-
global SessionCounter
|
70 |
-
|
71 |
-
SessionCounterLock.acquire()
|
72 |
-
SessionCounter = SessionCounter + 1
|
73 |
-
sessionID = SessionCounter
|
74 |
-
SessionCounterLock.release()
|
75 |
-
print(f'SessionID={sessionID}')
|
76 |
-
|
77 |
-
return sessionID
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
# ###### DeepFakeECG Plus Session (session with web browser) ################
|
82 |
class Session:
|
83 |
|
84 |
# ###### Constructor #####################################################
|
85 |
def __init__(self):
|
86 |
-
self.Lock
|
87 |
-
self.Counter
|
88 |
-
self.Results
|
|
|
89 |
|
90 |
# ###### Increment counter ###############################################
|
91 |
def increment(self):
|
@@ -115,27 +97,19 @@ def incrementCounter(request: gradio.Request):
|
|
115 |
log(f'ERROR: Session "{request.session_hash}" is not initialized!')
|
116 |
|
117 |
|
118 |
-
# ###### Get last results ###################################################
|
119 |
-
def getLastResults() -> list:
|
120 |
-
return LastResults
|
121 |
-
|
122 |
-
|
123 |
-
# ###### Get last result ####################################################
|
124 |
-
def getLastResult(index: int) -> torch.Tensor:
|
125 |
-
if LastResults != None:
|
126 |
-
return LastResults[index]
|
127 |
-
return None
|
128 |
-
|
129 |
|
130 |
# ###### Generate ECGs ######################################################
|
131 |
-
def predict(numberOfECGs
|
132 |
-
# ecgLengthInSeconds = 10,
|
133 |
-
ecgTypeString
|
134 |
-
generatorModel
|
135 |
-
|
136 |
|
137 |
ecgLengthInSeconds = 10
|
138 |
|
|
|
|
|
|
|
139 |
# ====== Set ECG type ====================================================
|
140 |
ecgType = deepfakeecg.DATA_ECG12
|
141 |
if ecgTypeString == 'ECG-8':
|
@@ -151,19 +125,19 @@ def predict(numberOfECGs = 1,
|
|
151 |
# print(matplotlib.ticker.Locator.MAXTICKS)
|
152 |
|
153 |
# ====== Generate the ECGs ===============================================
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
|
163 |
# ====== Create a list of image/label tuples for gradio.Gallery ==========
|
164 |
plotList = []
|
165 |
ecgNumber = 1
|
166 |
-
for result in
|
167 |
|
168 |
# ====== Plot ECG =====================================================
|
169 |
result = result.t().detach().cpu().numpy()
|
@@ -199,15 +173,13 @@ def predict(numberOfECGs = 1,
|
|
199 |
|
200 |
|
201 |
# ###### Select ECG in the gallery ##########################################
|
202 |
-
def select(event:
|
|
|
203 |
# Get selection index from Gallery select() event:
|
204 |
# https://github.com/gradio-app/gradio/issues/1976#issuecomment-1726018500
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
print(f'Selected #{SelectedECGIndex}!')
|
209 |
-
|
210 |
-
# return event.value
|
211 |
|
212 |
|
213 |
# ###### Produce CSV file from Tensor #######################################
|
@@ -230,25 +202,23 @@ def dataToCSV(data, outputFileName, ecgType = deepfakeecg.DATA_ECG12) -> sys.pat
|
|
230 |
|
231 |
|
232 |
# ###### Download CSV #######################################################
|
233 |
-
def downloadCSV(request: gradio.Request)
|
234 |
log(f'Session "{request.session_hash}": Download CSV file')
|
235 |
|
236 |
|
237 |
# ###### Download PDF #######################################################
|
238 |
-
def downloadPDF(request: gradio.Request)
|
239 |
log(f'Session "{request.session_hash}": Download PDF file')
|
240 |
|
241 |
|
242 |
# ###### Analyze the selected ECG ###########################################
|
243 |
-
def analyze(request: gradio.Request)
|
244 |
|
245 |
-
log(f'Session "{request.session_hash}": Analyze #{
|
246 |
|
247 |
-
data =
|
248 |
print(data)
|
249 |
|
250 |
-
return None
|
251 |
-
|
252 |
|
253 |
|
254 |
# ###### Main program #######################################################
|
@@ -326,10 +296,6 @@ with gradio.Blocks(css = css, theme = gradio.themes.Glass(secondary_hue=gradio.t
|
|
326 |
# Session clean-up, to be called when page is closed/refreshed
|
327 |
gui.unload(cleanUpSession)
|
328 |
|
329 |
-
# ====== Unique session ID for this instance =============================
|
330 |
-
sessionID = gradio.State(0)
|
331 |
-
gui.load(generateSessionID, outputs = [ sessionID ])
|
332 |
-
|
333 |
# ====== Header ==========================================================
|
334 |
big_block = gradio.HTML("""
|
335 |
<div class="header">
|
|
|
49 |
import PIL
|
50 |
|
51 |
|
52 |
+
TempDirectory = None
|
53 |
+
Sessions = {}
|
|
|
|
|
54 |
|
55 |
|
56 |
# ###### Print log message ##################################################
|
|
|
59 |
': ' + logstring + '\x1b[0m'));
|
60 |
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
# ###### DeepFakeECG Plus Session (session with web browser) ################
|
63 |
class Session:
|
64 |
|
65 |
# ###### Constructor #####################################################
|
66 |
def __init__(self):
|
67 |
+
self.Lock = threading.Lock()
|
68 |
+
self.Counter = 0
|
69 |
+
self.Results = None
|
70 |
+
self.Selected = 0
|
71 |
|
72 |
# ###### Increment counter ###############################################
|
73 |
def increment(self):
|
|
|
97 |
log(f'ERROR: Session "{request.session_hash}" is not initialized!')
|
98 |
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
# ###### Generate ECGs ######################################################
|
102 |
+
def predict(numberOfECGs: int = 1,
|
103 |
+
# ecgLengthInSeconds: int = 10,
|
104 |
+
ecgTypeString: str = 'ECG-12',
|
105 |
+
generatorModel: str = 'Default',
|
106 |
+
request: gradio.Request = None) -> list:
|
107 |
|
108 |
ecgLengthInSeconds = 10
|
109 |
|
110 |
+
log(f'Session "{request.session_hash}": Generate EGCs!')
|
111 |
+
|
112 |
+
|
113 |
# ====== Set ECG type ====================================================
|
114 |
ecgType = deepfakeecg.DATA_ECG12
|
115 |
if ecgTypeString == 'ECG-8':
|
|
|
125 |
# print(matplotlib.ticker.Locator.MAXTICKS)
|
126 |
|
127 |
# ====== Generate the ECGs ===============================================
|
128 |
+
Sessions[request.session_hash].Results = \
|
129 |
+
deepfakeecg.generateDeepfakeECGs(numberOfECGs,
|
130 |
+
ecgType = ecgType,
|
131 |
+
ecgLengthInSeconds = ecgLengthInSeconds,
|
132 |
+
ecgScaleFactor = 6,
|
133 |
+
outputFormat = deepfakeecg.OUTPUT_TENSOR,
|
134 |
+
showProgress = False,
|
135 |
+
runOnDevice = runOnDevice)
|
136 |
|
137 |
# ====== Create a list of image/label tuples for gradio.Gallery ==========
|
138 |
plotList = []
|
139 |
ecgNumber = 1
|
140 |
+
for result in Sessions[request.session_hash].Results:
|
141 |
|
142 |
# ====== Plot ECG =====================================================
|
143 |
result = result.t().detach().cpu().numpy()
|
|
|
173 |
|
174 |
|
175 |
# ###### Select ECG in the gallery ##########################################
|
176 |
+
def select(event: gradio.SelectData,
|
177 |
+
request: gradio.Request):
|
178 |
# Get selection index from Gallery select() event:
|
179 |
# https://github.com/gradio-app/gradio/issues/1976#issuecomment-1726018500
|
180 |
|
181 |
+
Sessions[request.session_hash].Selected = event.index
|
182 |
+
log(f'Session "{request.session_hash}": Selected ECG #{Sessions[request.session_hash].Selected + 1}')
|
|
|
|
|
|
|
183 |
|
184 |
|
185 |
# ###### Produce CSV file from Tensor #######################################
|
|
|
202 |
|
203 |
|
204 |
# ###### Download CSV #######################################################
|
205 |
+
def downloadCSV(request: gradio.Request):
|
206 |
log(f'Session "{request.session_hash}": Download CSV file')
|
207 |
|
208 |
|
209 |
# ###### Download PDF #######################################################
|
210 |
+
def downloadPDF(request: gradio.Request):
|
211 |
log(f'Session "{request.session_hash}": Download PDF file')
|
212 |
|
213 |
|
214 |
# ###### Analyze the selected ECG ###########################################
|
215 |
+
def analyze(request: gradio.Request):
|
216 |
|
217 |
+
log(f'Session "{request.session_hash}": Analyze ECG #{Sessions[request.session_hash].Selected + 1}!')
|
218 |
|
219 |
+
data = Sessions[request.session_hash].Results[Sessions[request.session_hash].Selected]
|
220 |
print(data)
|
221 |
|
|
|
|
|
222 |
|
223 |
|
224 |
# ###### Main program #######################################################
|
|
|
296 |
# Session clean-up, to be called when page is closed/refreshed
|
297 |
gui.unload(cleanUpSession)
|
298 |
|
|
|
|
|
|
|
|
|
299 |
# ====== Header ==========================================================
|
300 |
big_block = gradio.HTML("""
|
301 |
<div class="header">
|