Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,89 +2,99 @@
|
|
2 |
|
3 |
import streamlit as st
|
4 |
import tensorflow as tf
|
5 |
-
from tensorflow.keras.preprocessing.text import Tokenizer
|
6 |
-
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
7 |
import numpy as np
|
|
|
|
|
|
|
8 |
from lime.lime_text import LimeTextExplainer
|
9 |
-
import matplotlib.pyplot as plt
|
10 |
-
|
11 |
-
# Streamlit Title
|
12 |
-
st.title("Prompt Injection Detection and Prevention")
|
13 |
-
st.write("Classify prompts as malicious or valid and understand predictions using LIME.")
|
14 |
|
15 |
-
#
|
16 |
@st.cache_resource
|
17 |
def load_model(filepath):
|
18 |
return tf.keras.models.load_model(filepath)
|
19 |
|
20 |
-
#
|
21 |
@st.cache_resource
|
22 |
-
def
|
23 |
-
|
24 |
-
|
25 |
-
tokenizer.fit_on_texts(["example prompt", "malicious attack", "valid input prompt"])
|
26 |
-
return tokenizer
|
27 |
|
28 |
-
#
|
29 |
def preprocess_prompt(prompt, tokenizer, max_length=100):
|
30 |
sequence = tokenizer.texts_to_sequences([prompt])
|
31 |
-
|
|
|
32 |
|
33 |
-
#
|
34 |
-
def detect_prompt(prompt, tokenizer, model):
|
35 |
-
processed_prompt = preprocess_prompt(prompt, tokenizer)
|
36 |
prediction = model.predict(processed_prompt)[0][0]
|
37 |
-
class_label =
|
38 |
confidence_score = prediction * 100 if prediction >= 0.5 else (1 - prediction) * 100
|
39 |
return class_label, confidence_score
|
40 |
|
41 |
-
# LIME
|
42 |
def lime_explain(prompt, model, tokenizer, max_length=100):
|
43 |
-
explainer = LimeTextExplainer(class_names=["Valid", "Malicious"])
|
44 |
-
|
45 |
def predict_fn(prompts):
|
46 |
sequences = tokenizer.texts_to_sequences(prompts)
|
47 |
padded_sequences = pad_sequences(sequences, maxlen=max_length)
|
48 |
predictions = model.predict(padded_sequences)
|
49 |
return np.hstack([1 - predictions, predictions])
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
num_features=10
|
55 |
-
)
|
56 |
return explanation
|
57 |
|
58 |
-
#
|
59 |
-
st.
|
60 |
-
|
61 |
-
tokenizer = None
|
62 |
-
model_path = "deep_learning_model (1).h5" # Ensure this file is in the same directory as app.py
|
63 |
-
|
64 |
-
try:
|
65 |
-
model = load_model(model_path)
|
66 |
-
tokenizer = setup_tokenizer()
|
67 |
-
st.success("Model Loaded Successfully!")
|
68 |
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
user_prompt = st.text_input("Enter a prompt to classify:")
|
72 |
-
|
73 |
if user_prompt:
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
# Footer
|
89 |
-
st.write("---")
|
90 |
-
st.write("Developed for detecting and preventing prompt injection attacks.")
|
|
|
2 |
|
3 |
import streamlit as st
|
4 |
import tensorflow as tf
|
|
|
|
|
5 |
import numpy as np
|
6 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
7 |
+
import pickle
|
8 |
+
from lime import lime_text
|
9 |
from lime.lime_text import LimeTextExplainer
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Load the model
|
12 |
@st.cache_resource
|
13 |
def load_model(filepath):
|
14 |
return tf.keras.models.load_model(filepath)
|
15 |
|
16 |
+
# Load tokenizer
|
17 |
@st.cache_resource
|
18 |
+
def load_tokenizer(filepath):
|
19 |
+
with open(filepath, 'rb') as handle:
|
20 |
+
return pickle.load(handle)
|
|
|
|
|
21 |
|
22 |
+
# Preprocess prompt
|
23 |
def preprocess_prompt(prompt, tokenizer, max_length=100):
|
24 |
sequence = tokenizer.texts_to_sequences([prompt])
|
25 |
+
padded_sequence = pad_sequences(sequence, maxlen=max_length)
|
26 |
+
return padded_sequence
|
27 |
|
28 |
+
# Predict prompt class
|
29 |
+
def detect_prompt(prompt, tokenizer, model, max_length=100):
|
30 |
+
processed_prompt = preprocess_prompt(prompt, tokenizer, max_length)
|
31 |
prediction = model.predict(processed_prompt)[0][0]
|
32 |
+
class_label = "Malicious" if prediction >= 0.5 else "Valid"
|
33 |
confidence_score = prediction * 100 if prediction >= 0.5 else (1 - prediction) * 100
|
34 |
return class_label, confidence_score
|
35 |
|
36 |
+
# LIME explanation
|
37 |
def lime_explain(prompt, model, tokenizer, max_length=100):
|
|
|
|
|
38 |
def predict_fn(prompts):
|
39 |
sequences = tokenizer.texts_to_sequences(prompts)
|
40 |
padded_sequences = pad_sequences(sequences, maxlen=max_length)
|
41 |
predictions = model.predict(padded_sequences)
|
42 |
return np.hstack([1 - predictions, predictions])
|
43 |
+
|
44 |
+
class_names = ["Valid", "Malicious"]
|
45 |
+
explainer = LimeTextExplainer(class_names=class_names)
|
46 |
+
explanation = explainer.explain_instance(prompt, predict_fn, num_features=10)
|
|
|
|
|
47 |
return explanation
|
48 |
|
49 |
+
# Streamlit App
|
50 |
+
st.title("Prompt Injection Detection and Prevention")
|
51 |
+
st.write("Classify prompts as malicious or valid and understand predictions using LIME.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
# Model input
|
54 |
+
model_path = st.text_input("Enter the path to your trained model (.h5):")
|
55 |
+
if model_path:
|
56 |
+
try:
|
57 |
+
model = load_model(model_path)
|
58 |
+
st.success("Model Loaded Successfully!")
|
59 |
+
except Exception as e:
|
60 |
+
st.error(f"Error Loading Model: {e}")
|
61 |
+
model = None
|
62 |
+
else:
|
63 |
+
model = None
|
64 |
+
|
65 |
+
# Tokenizer input
|
66 |
+
tokenizer_path = st.text_input("Enter the path to your tokenizer file (.pickle):")
|
67 |
+
if tokenizer_path:
|
68 |
+
try:
|
69 |
+
tokenizer = load_tokenizer(tokenizer_path)
|
70 |
+
st.success("Tokenizer Loaded Successfully!")
|
71 |
+
except Exception as e:
|
72 |
+
st.error(f"Error Loading Tokenizer: {e}")
|
73 |
+
tokenizer = None
|
74 |
+
else:
|
75 |
+
tokenizer = None
|
76 |
+
|
77 |
+
# Prompt classification
|
78 |
+
if model and tokenizer:
|
79 |
user_prompt = st.text_input("Enter a prompt to classify:")
|
|
|
80 |
if user_prompt:
|
81 |
+
st.subheader("Model Prediction")
|
82 |
+
try:
|
83 |
+
# Classify the prompt
|
84 |
+
class_label, confidence_score = detect_prompt(user_prompt, tokenizer, model)
|
85 |
+
st.write(f"Predicted Class: **{class_label}**")
|
86 |
+
st.write(f"Confidence Score: **{confidence_score:.2f}%**")
|
87 |
+
|
88 |
+
# Debugging information
|
89 |
+
st.write("Debugging Information:")
|
90 |
+
st.write(f"Tokenized Sequence: {tokenizer.texts_to_sequences([user_prompt])}")
|
91 |
+
st.write(f"Padded Sequence: {preprocess_prompt(user_prompt, tokenizer)}")
|
92 |
+
st.write(f"Raw Model Output: {model.predict(preprocess_prompt(user_prompt, tokenizer))[0][0]}")
|
93 |
+
|
94 |
+
# Generate LIME explanation
|
95 |
+
explanation = lime_explain(user_prompt, model, tokenizer)
|
96 |
+
explanation_as_html = explanation.as_html()
|
97 |
+
st.components.v1.html(explanation_as_html, height=500)
|
98 |
+
except Exception as e:
|
99 |
+
st.error(f"Error during prediction: {e}")
|
100 |
|
|
|
|
|
|