deepugaur commited on
Commit
8b4479c
·
verified ·
1 Parent(s): 1dd8ca2

Create model.h5

Browse files
Files changed (1) hide show
  1. model.h5 +36 -0
model.h5 ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Example model training script
2
+ from tensorflow.keras.models import Sequential
3
+ from tensorflow.keras.layers import Embedding, LSTM, Dense, Dropout
4
+ from tensorflow.keras.preprocessing.text import Tokenizer
5
+ from tensorflow.keras.preprocessing.sequence import pad_sequences
6
+ import numpy as np
7
+ import pickle
8
+
9
+ # Sample dataset
10
+ texts = ["This is valid", "This is malicious", "Valid text", "Malicious text"]
11
+ labels = [0, 1, 0, 1] # 0: Valid, 1: Malicious
12
+
13
+ # Tokenization
14
+ tokenizer = Tokenizer(num_words=1000)
15
+ tokenizer.fit_on_texts(texts)
16
+ sequences = tokenizer.texts_to_sequences(texts)
17
+ padded_sequences = pad_sequences(sequences, maxlen=50)
18
+
19
+ # Save the tokenizer
20
+ with open("tokenizer.pkl", "wb") as f:
21
+ pickle.dump(tokenizer, f)
22
+
23
+ # Model architecture
24
+ model = Sequential([
25
+ Embedding(input_dim=1000, output_dim=64, input_length=50),
26
+ LSTM(64, return_sequences=False),
27
+ Dropout(0.5),
28
+ Dense(1, activation="sigmoid")
29
+ ])
30
+
31
+ # Compile and train the model
32
+ model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
33
+ model.fit(padded_sequences, np.array(labels), epochs=10)
34
+
35
+ # Save the model
36
+ model.save("model.h5")