Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,75 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import streamlit as st
|
4 |
-
import numpy as np
|
5 |
-
import pandas as pd
|
6 |
-
from tensorflow.keras.preprocessing.text import Tokenizer
|
7 |
-
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
8 |
-
from tensorflow.keras.models import load_model
|
9 |
-
from lime.lime_text import LimeTextExplainer
|
10 |
-
import matplotlib.pyplot as plt
|
11 |
-
import seaborn as sns
|
12 |
-
|
13 |
-
# Load the trained model
|
14 |
-
@st.cache_resource
|
15 |
-
def load_trained_model():
|
16 |
-
model = load_model("deep_learning_model.h5")
|
17 |
-
return model
|
18 |
-
|
19 |
-
model = load_trained_model()
|
20 |
-
|
21 |
-
# Tokenizer setup
|
22 |
-
tokenizer = Tokenizer(num_words=5000)
|
23 |
-
max_length = 100
|
24 |
-
|
25 |
-
# Load Data
|
26 |
-
@st.cache_data
|
27 |
-
def load_data():
|
28 |
-
data = pd.read_csv("train prompt.csv", sep=',', quoting=3, encoding='ISO-8859-1', on_bad_lines='skip', engine='python')
|
29 |
-
data['label'] = data['label'].replace({'valid': 0, 'malicious': 1})
|
30 |
-
return data
|
31 |
-
|
32 |
-
data = load_data()
|
33 |
-
tokenizer.fit_on_texts(data['input'].values)
|
34 |
-
|
35 |
-
# Preprocessing functions
|
36 |
-
def preprocess_prompt(prompt, tokenizer, max_length):
|
37 |
-
sequence = tokenizer.texts_to_sequences([prompt])
|
38 |
-
padded_sequence = pad_sequences(sequence, maxlen=max_length)
|
39 |
-
return padded_sequence
|
40 |
-
|
41 |
-
def detect_prompt(prompt, model, tokenizer, max_length):
|
42 |
-
processed_prompt = preprocess_prompt(prompt, tokenizer, max_length)
|
43 |
-
prediction = model.predict(processed_prompt)[0][0]
|
44 |
-
class_label = 'Malicious' if prediction >= 0.5 else 'Valid'
|
45 |
-
confidence_score = prediction * 100 if prediction >= 0.5 else (1 - prediction) * 100
|
46 |
-
return class_label, confidence_score
|
47 |
-
|
48 |
-
# Load model
|
49 |
-
model = load_trained_model()
|
50 |
-
|
51 |
-
# Streamlit app
|
52 |
-
st.title("Prompt Injection Attack Detection")
|
53 |
-
st.write("This application detects malicious prompts to prevent injection attacks.")
|
54 |
-
|
55 |
-
prompt = st.text_input("Enter a prompt to analyze:")
|
56 |
-
|
57 |
-
if prompt:
|
58 |
-
class_label, confidence = detect_prompt(prompt, model, tokenizer, max_length)
|
59 |
-
st.write(f"### Prediction: {class_label}")
|
60 |
-
st.write(f"Confidence: {confidence:.2f}%")
|
61 |
-
|
62 |
-
# LIME explanation
|
63 |
-
st.write("Generating LIME Explanation...")
|
64 |
-
explainer = LimeTextExplainer(class_names=["Valid", "Malicious"])
|
65 |
-
|
66 |
-
def predict_fn(prompts):
|
67 |
-
sequences = tokenizer.texts_to_sequences(prompts)
|
68 |
-
padded_sequences = pad_sequences(sequences, maxlen=max_length)
|
69 |
-
predictions = model.predict(padded_sequences)
|
70 |
-
return np.hstack([1 - predictions, predictions])
|
71 |
-
|
72 |
-
explanation = explainer.explain_instance(prompt, predict_fn, num_features=10)
|
73 |
-
fig = explanation.as_pyplot_figure()
|
74 |
-
st.pyplot(fig)
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|