import numpy as np import pandas as pd import tensorflow as tf from sklearn.model_selection import train_test_split from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.layers import Embedding, LSTM, Dense, Bidirectional, Dropout, Input from tensorflow.keras.models import Model from tensorflow.keras import regularizers from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.optimizers import Adam # Load and preprocess data data = pd.read_csv("train prompt.csv", sep=',', quoting=3, encoding='ISO-8859-1', on_bad_lines='skip', engine='python') data['label'] = data['label'].replace({'valid': 0, 'malicious': 1}) X = data['input'].values y = data['label'].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Tokenizer and padding tokenizer = Tokenizer(num_words=5000) tokenizer.fit_on_texts(X_train) X_train_seq = tokenizer.texts_to_sequences(X_train) X_test_seq = tokenizer.texts_to_sequences(X_test) max_length = 100 X_train_pad = pad_sequences(X_train_seq, maxlen=max_length) X_test_pad = pad_sequences(X_test_seq, maxlen=max_length) # Model definition input_layer = Input(shape=(max_length,)) embedding_layer = Embedding(input_dim=5000, output_dim=128, input_length=max_length)(input_layer) x = Bidirectional(LSTM(64, return_sequences=True, dropout=0.2, kernel_regularizer=regularizers.l2(0.01)))(embedding_layer) x = Dropout(0.3)(x) x = Bidirectional(LSTM(64, dropout=0.2, kernel_regularizer=regularizers.l2(0.01)))(x) malicious_output = Dense(1, activation='sigmoid')(x) model = Model(inputs=input_layer, outputs=malicious_output) optimizer = Adam(learning_rate=0.0001) model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy']) # Training the model early_stopping = EarlyStopping(monitor='val_loss', patience=3, restore_best_weights=True) model.fit(X_train_pad, y_train, epochs=5, batch_size=32, validation_data=(X_test_pad, y_test), callbacks=[early_stopping]) # Save the trained model model.save("deep_learning_model.h5") print("Model saved to deep_learning_model.h5") if __name__ == "__main__": train_model() # Ensure this calls the training function