File size: 16,838 Bytes
79180e5 c14aecf bad4173 3ea0b26 79180e5 cd8b7fb aab9b8a 79180e5 cd8b7fb bad4173 cd8b7fb 79180e5 cd8b7fb aab9b8a 79180e5 c14aecf aab9b8a c14aecf 79180e5 c14aecf aab9b8a 79180e5 aab9b8a 79180e5 cd8b7fb 79180e5 ba50457 fa0da49 ba50457 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
import gradio as gr
import os
import time
import requests
import json
import plotly.express as px
import pandas as pd
# Model options for dropdown with both Together AI and Anthropic models
together_models = [
"Qwen/Qwen2.5-Coder-32B-Instruct",
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
"meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
]
anthropic_models = [
"claude-3-7-sonnet-20250219",
"claude-3-haiku-20240307"
]
all_models = together_models + anthropic_models
VALIDATION_SCHEMA = {
"quality_rating": "int (1β10)",
"accuracy": "float (0.0β1.0)",
"completeness": "float (0.0β1.0)",
"best_practices_alignment": "float (0.0β1.0)",
"explanations": {
"quality_rating": "string",
"accuracy": "string",
"completeness": "string",
"best_practices_alignment": "string"
}
}
def get_api_key(provider):
if provider == "together":
api_key = os.getenv("TOGETHER_API_KEY")
if not api_key:
raise ValueError("TOGETHER_API_KEY not set. Please add it in Space secrets.")
return api_key
elif provider == "anthropic":
api_key = os.getenv("ANTHROPIC_API_KEY")
if not api_key:
raise ValueError("ANTHROPIC_API_KEY not set. Please add it in Space secrets.")
return api_key
else:
raise ValueError(f"Unknown provider: {provider}")
def get_provider(model):
if model in together_models:
return "together"
elif model in anthropic_models:
return "anthropic"
else:
raise ValueError(f"Unknown model: {model}")
def call_together_api(model, prompt, temperature=0.7, max_tokens=1500):
api_key = get_api_key("together")
system_message = (
"You are a Salesforce development expert specializing in B2B Commerce migrations,"
" CloudCraze to B2B Lightning Experience conversions, and Apex code optimization."
)
try:
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
payload = {
"model": model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": prompt}
],
"temperature": temperature,
"max_tokens": max_tokens,
"top_p": 0.9
}
resp = requests.post(
"https://api.together.xyz/v1/chat/completions",
headers=headers,
json=payload
)
if resp.status_code != 200:
return f"Error: Status {resp.status_code}: {resp.text}"
data = resp.json()
text = data["choices"][0]["message"]["content"]
return text
except Exception as e:
return f"Error calling Together AI API: {e}"
def call_anthropic_api(model, prompt, temperature=0.7, max_tokens=1500):
api_key = get_api_key("anthropic")
system_message = (
"You are a Salesforce development expert specializing in B2B Commerce migrations,"
" CloudCraze to B2B Lightning Experience conversions, and Apex code optimization."
)
try:
headers = {
"x-api-key": api_key,
"anthropic-version": "2023-06-01",
"content-type": "application/json"
}
payload = {
"model": model,
"system": system_message,
"messages": [
{"role": "user", "content": prompt}
],
"temperature": temperature,
"max_tokens": max_tokens
}
resp = requests.post(
"https://api.anthropic.com/v1/messages",
headers=headers,
json=payload
)
if resp.status_code != 200:
return f"Error: Status {resp.status_code}: {resp.text}"
data = resp.json()
text = data["content"][0]["text"]
return text
except Exception as e:
return f"Error calling Anthropic API: {e}"
def call_llm(model, prompt, temperature=0.7, max_tokens=1500):
provider = get_provider(model)
if provider == "together":
return call_together_api(model, prompt, temperature, max_tokens)
elif provider == "anthropic":
return call_anthropic_api(model, prompt, temperature, max_tokens)
else:
return f"Error: Unknown provider for model {model}"
def correct_apex_trigger(model, trigger_code):
if not trigger_code.strip():
return "Please provide Apex Trigger code to correct."
prompt = f"""
Please analyze and correct the following Apex Trigger code for migration from CloudCraze to B2B Lightning Experience.
Identify any issues, optimize it according to best practices, and provide the corrected code.
```apex
{trigger_code}
```
Please return the corrected code with explanations of changes.
"""
return call_llm(model, prompt)
def convert_cc_object(model, cc_object_code):
if not cc_object_code.strip():
return "Please provide CloudCraze Object code to convert."
prompt = f"""
Please convert the following CloudCraze Object code to B2B Lightning Experience format.
Identify the corresponding B2B LEx system object, map fields, and provide the full definition.
```
{cc_object_code}
```
Return:
1. Equivalent B2B LEx object name
2. Field mappings
3. Full implementation code
4. Additional steps if needed
"""
return call_llm(model, prompt)
def validate_apex_trigger(validation_model, original_code, corrected_code):
if not validation_model or not original_code.strip() or not corrected_code.strip():
return "Please provide all required inputs for validation."
prompt = f"""
I need you to validate and review the following Apex code migration. This involves both CloudCraze to B2B Lightning Experience conversions AND general Apex code optimization.
ORIGINAL CODE:
```apex
{original_code}
```
CORRECTED CODE:
```apex
{corrected_code}
```
Please review the corrected code and provide:
1. Is the correction accurate and complete? Highlight any missed issues.
2. Are there any potential runtime errors or performance concerns?
3. Does it follow Salesforce best practices for B2B Lightning Experience?
4. Are there optimization opportunities that were missed?
5. Evaluate both the B2B Commerce conversion aspects AND the general Apex optimization.
6. Rate the quality of the correction on a scale of 1-10 with explanation.
Additionally, provide a structured assessment in JSON format following this schema:
{json.dumps(VALIDATION_SCHEMA, indent=2)}
Be thorough and detailed in your assessment, addressing both the conversion and optimization aspects.
"""
return call_llm(validation_model, prompt)
def validate_cc_object_conversion(validation_model, original_object, converted_object):
if not validation_model or not original_object.strip() or not converted_object.strip():
return "Please provide all required inputs for validation."
prompt = f"""
I need you to validate and review the following CloudCraze Object conversion to B2B Lightning Experience format. This involves both CloudCraze to B2B Lightning Experience conversions AND optimization of the resulting code.
ORIGINAL CLOUDCRAZE OBJECT:
```
{original_object}
```
CONVERTED B2B LEX OBJECT:
```
{converted_object}
```
Please review the conversion and provide:
1. Is the object mapping correct and complete? Identify any missed fields or relationships.
2. Are there any potential data migration issues or concerns?
3. Does the converted object follow B2B Lightning Experience best practices?
4. Are there optimization opportunities that were missed in the conversion?
5. Evaluate both the B2B Commerce conversion aspects AND the optimization of the resulting code.
6. Rate the quality of the conversion on a scale of 1-10 with explanation.
Additionally, provide a structured assessment in JSON format following this schema:
{json.dumps(VALIDATION_SCHEMA, indent=2)}
Be thorough and detailed in your assessment, addressing both the conversion and optimization aspects.
"""
return call_llm(validation_model, prompt)
def extract_validation_metrics(validation_text):
try:
# Try to find JSON in the response
start_idx = validation_text.find('{')
end_idx = validation_text.rfind('}') + 1
if start_idx != -1 and end_idx != -1 and start_idx < end_idx:
json_str = validation_text[start_idx:end_idx]
data = json.loads(json_str)
# Extract the required metrics
metrics = {
"quality_rating": data.get("quality_rating", 0),
"accuracy": data.get("accuracy", 0.0),
"completeness": data.get("completeness", 0.0),
"best_practices_alignment": data.get("best_practices_alignment", 0.0)
}
return metrics
return None
except Exception as e:
print(f"Error extracting metrics: {e}")
return None
def create_radar_chart(metrics):
if not metrics:
return None
# Create data for the radar chart
categories = ["Quality", "Accuracy", "Completeness", "Best Practices"]
values = [
metrics["quality_rating"] / 10, # Normalize to 0-1 scale
metrics["accuracy"],
metrics["completeness"],
metrics["best_practices_alignment"]
]
# Create a DataFrame for plotting
df = pd.DataFrame({
'Category': categories,
'Value': values
})
# Create the radar chart
fig = px.line_polar(
df, r='Value', theta='Category', line_close=True,
range_r=[0, 1], title="Validation Assessment"
)
fig.update_traces(fill='toself')
return fig
def main():
with gr.Blocks(title="Salesforce B2B Commerce Migration Assistant") as app:
gr.Markdown("# Salesforce B2B Commerce Migration Assistant")
gr.Markdown("This tool helps migrate CloudCraze code to B2B Lightning Experience.")
# Create model dropdowns
with gr.Row():
with gr.Column():
gr.Markdown("### Primary Model")
primary_model_dropdown = gr.Dropdown(
choices=all_models,
value=anthropic_models[0], # Default to Claude 3.7 Sonnet
label="Select Primary AI Model for Conversion"
)
with gr.Column():
gr.Markdown("### Validation Model")
validation_model_dropdown = gr.Dropdown(
choices=all_models,
value=anthropic_models[1], # Default to Claude 3 Haiku
label="Select Validation AI Model for Review",
info="This model will validate and review the output from the primary model"
)
with gr.Tab("Apex Trigger Correction"):
gr.Markdown("### Apex Trigger Correction")
gr.Markdown("Paste your Apex Trigger code below:")
trigger_input = gr.Textbox(
lines=12,
placeholder="Paste Apex Trigger code here...",
label="Apex Trigger Code"
)
trigger_output = gr.Textbox(
lines=15,
label="Corrected Apex Trigger",
interactive=True
)
trigger_button = gr.Button("Correct Apex Trigger")
trigger_button.click(
fn=correct_apex_trigger,
inputs=[primary_model_dropdown, trigger_input],
outputs=trigger_output,
show_progress=True
)
gr.Markdown("### Validation Results")
with gr.Row():
with gr.Column(scale=2):
trigger_validation_output = gr.Textbox(
lines=15,
label="Validation Assessment",
placeholder="Validation results will appear here after clicking 'Validate Correction'",
interactive=True
)
with gr.Column(scale=1):
trigger_chart = gr.Plot(label="Validation Metrics")
validate_trigger_button = gr.Button("Validate Correction")
def validate_and_chart_trigger(model, original, corrected):
validation_text = validate_apex_trigger(model, original, corrected)
metrics = extract_validation_metrics(validation_text)
chart = create_radar_chart(metrics) if metrics else None
return validation_text, chart
validate_trigger_button.click(
fn=validate_and_chart_trigger,
inputs=[validation_model_dropdown, trigger_input, trigger_output],
outputs=[trigger_validation_output, trigger_chart],
show_progress=True
)
with gr.Row():
trigger_clear = gr.Button("Clear Input")
trigger_clear.click(lambda: "", [], trigger_input)
results_clear = gr.Button("Clear Results")
results_clear.click(
lambda: ["", "", None],
[],
[trigger_output, trigger_validation_output, trigger_chart]
)
with gr.Tab("CloudCraze Object Conversion"):
gr.Markdown("### CloudCraze Object Conversion")
gr.Markdown("Paste your CloudCraze Object code below:")
object_input = gr.Textbox(
lines=12,
placeholder="Paste CC object code here...",
label="CloudCraze Object Code"
)
object_output = gr.Textbox(
lines=15,
label="Converted B2B LEx Object",
interactive=True
)
object_button = gr.Button("Convert Object")
object_button.click(
fn=convert_cc_object,
inputs=[primary_model_dropdown, object_input],
outputs=object_output,
show_progress=True
)
gr.Markdown("### Validation Results")
with gr.Row():
with gr.Column(scale=2):
object_validation_output = gr.Textbox(
lines=15,
label="Validation Assessment",
placeholder="Validation results will appear here after clicking 'Validate Conversion'",
interactive=True
)
with gr.Column(scale=1):
object_chart = gr.Plot(label="Validation Metrics")
validate_object_button = gr.Button("Validate Conversion")
def validate_and_chart_object(model, original, converted):
validation_text = validate_cc_object_conversion(model, original, converted)
metrics = extract_validation_metrics(validation_text)
chart = create_radar_chart(metrics) if metrics else None
return validation_text, chart
validate_object_button.click(
fn=validate_and_chart_object,
inputs=[validation_model_dropdown, object_input, object_output],
outputs=[object_validation_output, object_chart],
show_progress=True
)
with gr.Row():
object_clear = gr.Button("Clear Input")
object_clear.click(lambda: "", [], object_input)
object_results_clear = gr.Button("Clear Results")
object_results_clear.click(
lambda: ["", "", None],
[],
[object_output, object_validation_output, object_chart]
)
with gr.Accordion("About This Tool", open=False):
gr.Markdown("""
β’ Primary Model: Performs the initial code conversion or correction.
β’ Validation Model: Reviews and validates the output from the primary model, identifying potential issues or improvements.
β’ Trigger Correction: Fixes Apex Triggers for B2B LEx compatibility.
β’ Object Conversion: Maps and converts CloudCraze object definitions to B2B LEx.
β’ Model Selection: Choose from Together AI models or Anthropic's Claude models.
Validation now outputs four key metrics (quality, accuracy, completeness, best practices) as both JSON and a fun chart.
Always review AI-generated code before production use.
""")
app.launch()
if __name__ == "__main__":
main() |