Spaces:
Runtime error
Runtime error
| # Adapted from PixArt | |
| # | |
| # Copyright (C) 2023 PixArt-alpha/PixArt-alpha | |
| # | |
| # This program is free software: you can redistribute it and/or modify | |
| # it under the terms of the GNU Affero General Public License as published | |
| # by the Free Software Foundation, either version 3 of the License, or | |
| # (at your option) any later version. | |
| # | |
| # This program is distributed in the hope that it will be useful, | |
| # but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| # GNU Affero General Public License for more details. | |
| # | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| # -------------------------------------------------------- | |
| # References: | |
| # PixArt: https://github.com/PixArt-alpha/PixArt-alpha | |
| # DiT: https://github.com/facebookresearch/DiT/tree/main | |
| # -------------------------------------------------------- | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from einops import rearrange | |
| from timm.models.layers import DropPath | |
| from timm.models.vision_transformer import Mlp | |
| # from .builder import MODELS | |
| from opensora.acceleration.checkpoint import auto_grad_checkpoint | |
| from opensora.models.layers.blocks import ( | |
| Attention, | |
| CaptionEmbedder, | |
| MultiHeadCrossAttention, | |
| PatchEmbed3D, | |
| SeqParallelAttention, | |
| SeqParallelMultiHeadCrossAttention, | |
| SizeEmbedder, | |
| T2IFinalLayer, | |
| TimestepEmbedder, | |
| approx_gelu, | |
| get_1d_sincos_pos_embed, | |
| get_2d_sincos_pos_embed, | |
| get_layernorm, | |
| t2i_modulate, | |
| ) | |
| from opensora.registry import MODELS | |
| from opensora.utils.ckpt_utils import load_checkpoint | |
| class PixArtBlock(nn.Module): | |
| """ | |
| A PixArt block with adaptive layer norm (adaLN-single) conditioning. | |
| """ | |
| def __init__( | |
| self, | |
| hidden_size, | |
| num_heads, | |
| mlp_ratio=4.0, | |
| drop_path=0.0, | |
| enable_flashattn=False, | |
| enable_layernorm_kernel=False, | |
| enable_sequence_parallelism=False, | |
| ): | |
| super().__init__() | |
| self.hidden_size = hidden_size | |
| self.enable_flashattn = enable_flashattn | |
| self._enable_sequence_parallelism = enable_sequence_parallelism | |
| if enable_sequence_parallelism: | |
| self.attn_cls = SeqParallelAttention | |
| self.mha_cls = SeqParallelMultiHeadCrossAttention | |
| else: | |
| self.attn_cls = Attention | |
| self.mha_cls = MultiHeadCrossAttention | |
| self.norm1 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel) | |
| self.attn = self.attn_cls( | |
| hidden_size, | |
| num_heads=num_heads, | |
| qkv_bias=True, | |
| enable_flashattn=enable_flashattn, | |
| ) | |
| self.cross_attn = self.mha_cls(hidden_size, num_heads) | |
| self.norm2 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel) | |
| self.mlp = Mlp( | |
| in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0 | |
| ) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
| self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5) | |
| def forward(self, x, y, t, mask=None): | |
| B, N, C = x.shape | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
| self.scale_shift_table[None] + t.reshape(B, 6, -1) | |
| ).chunk(6, dim=1) | |
| x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)).reshape(B, N, C)) | |
| x = x + self.cross_attn(x, y, mask) | |
| x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))) | |
| return x | |
| class PixArt(nn.Module): | |
| """ | |
| Diffusion model with a Transformer backbone. | |
| """ | |
| def __init__( | |
| self, | |
| input_size=(1, 32, 32), | |
| in_channels=4, | |
| patch_size=(1, 2, 2), | |
| hidden_size=1152, | |
| depth=28, | |
| num_heads=16, | |
| mlp_ratio=4.0, | |
| class_dropout_prob=0.1, | |
| pred_sigma=True, | |
| drop_path: float = 0.0, | |
| no_temporal_pos_emb=False, | |
| caption_channels=4096, | |
| model_max_length=120, | |
| dtype=torch.float32, | |
| freeze=None, | |
| space_scale=1.0, | |
| time_scale=1.0, | |
| enable_flashattn=False, | |
| enable_layernorm_kernel=False, | |
| ): | |
| super().__init__() | |
| self.pred_sigma = pred_sigma | |
| self.in_channels = in_channels | |
| self.out_channels = in_channels * 2 if pred_sigma else in_channels | |
| self.hidden_size = hidden_size | |
| self.patch_size = patch_size | |
| self.input_size = input_size | |
| num_patches = np.prod([input_size[i] // patch_size[i] for i in range(3)]) | |
| self.num_patches = num_patches | |
| self.num_temporal = input_size[0] // patch_size[0] | |
| self.num_spatial = num_patches // self.num_temporal | |
| self.base_size = int(np.sqrt(self.num_spatial)) | |
| self.num_heads = num_heads | |
| self.dtype = dtype | |
| self.no_temporal_pos_emb = no_temporal_pos_emb | |
| self.depth = depth | |
| self.mlp_ratio = mlp_ratio | |
| self.enable_flashattn = enable_flashattn | |
| self.enable_layernorm_kernel = enable_layernorm_kernel | |
| self.space_scale = space_scale | |
| self.time_scale = time_scale | |
| self.x_embedder = PatchEmbed3D(patch_size, in_channels, hidden_size) | |
| self.t_embedder = TimestepEmbedder(hidden_size) | |
| self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)) | |
| self.y_embedder = CaptionEmbedder( | |
| in_channels=caption_channels, | |
| hidden_size=hidden_size, | |
| uncond_prob=class_dropout_prob, | |
| act_layer=approx_gelu, | |
| token_num=model_max_length, | |
| ) | |
| self.register_buffer("pos_embed", self.get_spatial_pos_embed()) | |
| self.register_buffer("pos_embed_temporal", self.get_temporal_pos_embed()) | |
| drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule | |
| self.blocks = nn.ModuleList( | |
| [ | |
| PixArtBlock( | |
| hidden_size, | |
| num_heads, | |
| mlp_ratio=mlp_ratio, | |
| drop_path=drop_path[i], | |
| enable_flashattn=enable_flashattn, | |
| enable_layernorm_kernel=enable_layernorm_kernel, | |
| ) | |
| for i in range(depth) | |
| ] | |
| ) | |
| self.final_layer = T2IFinalLayer(hidden_size, np.prod(self.patch_size), self.out_channels) | |
| self.initialize_weights() | |
| if freeze is not None: | |
| assert freeze in ["text"] | |
| if freeze == "text": | |
| self.freeze_text() | |
| def forward(self, x, timestep, y, mask=None): | |
| """ | |
| Forward pass of PixArt. | |
| x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
| t: (N,) tensor of diffusion timesteps | |
| y: (N, 1, 120, C) tensor of class labels | |
| """ | |
| x = x.to(self.dtype) | |
| timestep = timestep.to(self.dtype) | |
| y = y.to(self.dtype) | |
| # embedding | |
| x = self.x_embedder(x) # (B, N, D) | |
| x = rearrange(x, "b (t s) d -> b t s d", t=self.num_temporal, s=self.num_spatial) | |
| x = x + self.pos_embed | |
| if not self.no_temporal_pos_emb: | |
| x = rearrange(x, "b t s d -> b s t d") | |
| x = x + self.pos_embed_temporal | |
| x = rearrange(x, "b s t d -> b (t s) d") | |
| else: | |
| x = rearrange(x, "b t s d -> b (t s) d") | |
| t = self.t_embedder(timestep, dtype=x.dtype) # (N, D) | |
| t0 = self.t_block(t) | |
| y = self.y_embedder(y, self.training) # (N, 1, L, D) | |
| if mask is not None: | |
| if mask.shape[0] != y.shape[0]: | |
| mask = mask.repeat(y.shape[0] // mask.shape[0], 1) | |
| mask = mask.squeeze(1).squeeze(1) | |
| y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) | |
| y_lens = mask.sum(dim=1).tolist() | |
| else: | |
| y_lens = [y.shape[2]] * y.shape[0] | |
| y = y.squeeze(1).view(1, -1, x.shape[-1]) | |
| # blocks | |
| for block in self.blocks: | |
| x = auto_grad_checkpoint(block, x, y, t0, y_lens) | |
| # final process | |
| x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
| x = self.unpatchify(x) # (N, out_channels, H, W) | |
| # cast to float32 for better accuracy | |
| x = x.to(torch.float32) | |
| return x | |
| def unpatchify(self, x): | |
| c = self.out_channels | |
| t, h, w = [self.input_size[i] // self.patch_size[i] for i in range(3)] | |
| pt, ph, pw = self.patch_size | |
| x = x.reshape(shape=(x.shape[0], t, h, w, pt, ph, pw, c)) | |
| x = rearrange(x, "n t h w r p q c -> n c t r h p w q") | |
| imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw)) | |
| return imgs | |
| def get_spatial_pos_embed(self, grid_size=None): | |
| if grid_size is None: | |
| grid_size = self.input_size[1:] | |
| pos_embed = get_2d_sincos_pos_embed( | |
| self.hidden_size, | |
| (grid_size[0] // self.patch_size[1], grid_size[1] // self.patch_size[2]), | |
| scale=self.space_scale, | |
| base_size=self.base_size, | |
| ) | |
| pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False) | |
| return pos_embed | |
| def get_temporal_pos_embed(self): | |
| pos_embed = get_1d_sincos_pos_embed( | |
| self.hidden_size, | |
| self.input_size[0] // self.patch_size[0], | |
| scale=self.time_scale, | |
| ) | |
| pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False) | |
| return pos_embed | |
| def freeze_text(self): | |
| for n, p in self.named_parameters(): | |
| if "cross_attn" in n: | |
| p.requires_grad = False | |
| def initialize_weights(self): | |
| # Initialize transformer layers: | |
| def _basic_init(module): | |
| if isinstance(module, nn.Linear): | |
| torch.nn.init.xavier_uniform_(module.weight) | |
| if module.bias is not None: | |
| nn.init.constant_(module.bias, 0) | |
| self.apply(_basic_init) | |
| # Initialize patch_embed like nn.Linear (instead of nn.Conv2d): | |
| w = self.x_embedder.proj.weight.data | |
| nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
| # Initialize timestep embedding MLP: | |
| nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) | |
| nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) | |
| nn.init.normal_(self.t_block[1].weight, std=0.02) | |
| # Initialize caption embedding MLP: | |
| nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02) | |
| nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02) | |
| # Zero-out adaLN modulation layers in PixArt blocks: | |
| for block in self.blocks: | |
| nn.init.constant_(block.cross_attn.proj.weight, 0) | |
| nn.init.constant_(block.cross_attn.proj.bias, 0) | |
| # Zero-out output layers: | |
| nn.init.constant_(self.final_layer.linear.weight, 0) | |
| nn.init.constant_(self.final_layer.linear.bias, 0) | |
| class PixArtMS(PixArt): | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| assert self.hidden_size % 3 == 0, "hidden_size must be divisible by 3" | |
| self.csize_embedder = SizeEmbedder(self.hidden_size // 3) | |
| self.ar_embedder = SizeEmbedder(self.hidden_size // 3) | |
| def forward(self, x, timestep, y, mask=None, data_info=None): | |
| """ | |
| Forward pass of PixArt. | |
| x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
| t: (N,) tensor of diffusion timesteps | |
| y: (N, 1, 120, C) tensor of class labels | |
| """ | |
| x = x.to(self.dtype) | |
| timestep = timestep.to(self.dtype) | |
| y = y.to(self.dtype) | |
| c_size = data_info["hw"] | |
| ar = data_info["ar"] | |
| pos_embed = self.get_spatial_pos_embed((x.shape[-2], x.shape[-1])).to(x.dtype) | |
| # embedding | |
| x = self.x_embedder(x) # (B, N, D) | |
| x = rearrange(x, "b (t s) d -> b t s d", t=self.num_temporal, s=self.num_spatial) | |
| x = x + pos_embed.to(x.device) | |
| if not self.no_temporal_pos_emb: | |
| x = rearrange(x, "b t s d -> b s t d") | |
| x = x + self.pos_embed_temporal | |
| x = rearrange(x, "b s t d -> b (t s) d") | |
| else: | |
| x = rearrange(x, "b t s d -> b (t s) d") | |
| t = self.t_embedder(timestep, dtype=x.dtype) # (N, D) | |
| B = x.shape[0] | |
| csize = self.csize_embedder(c_size, B) | |
| ar = self.ar_embedder(ar, B) | |
| t = t + torch.cat([csize, ar], dim=1) | |
| t0 = self.t_block(t) | |
| y = self.y_embedder(y, self.training) # (N, 1, L, D) | |
| if mask is not None: | |
| if mask.shape[0] != y.shape[0]: | |
| mask = mask.repeat(y.shape[0] // mask.shape[0], 1) | |
| mask = mask.squeeze(1).squeeze(1) | |
| y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) | |
| y_lens = mask.sum(dim=1).tolist() | |
| else: | |
| y_lens = [y.shape[2]] * y.shape[0] | |
| y = y.squeeze(1).view(1, -1, x.shape[-1]) | |
| # blocks | |
| for block in self.blocks: | |
| x = block(x, y, t0, y_lens) | |
| # final process | |
| x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
| x = self.unpatchify(x) # (N, out_channels, H, W) | |
| # cast to float32 for better accuracy | |
| x = x.to(torch.float32) | |
| return x | |
| def PixArt_XL_2(from_pretrained=None, **kwargs): | |
| model = PixArt(depth=28, hidden_size=1152, patch_size=(1, 2, 2), num_heads=16, **kwargs) | |
| if from_pretrained is not None: | |
| load_checkpoint(model, from_pretrained) | |
| return model | |
| def PixArtMS_XL_2(from_pretrained=None, **kwargs): | |
| model = PixArtMS(depth=28, hidden_size=1152, patch_size=(1, 2, 2), num_heads=16, **kwargs) | |
| if from_pretrained is not None: | |
| load_checkpoint(model, from_pretrained) | |
| return model | |