Spaces:
Runtime error
Runtime error
Upload 5 files (#5)
Browse files- Upload 5 files (2a3e831e86f939cc0fc0c8d41f03727086ea0833)
- Update app.py (8ef96d9543dfd19608316948b03b7fbbfa15db56)
- Upload 2 files (94e95f342f317ec49ef0be6be6d36adb023c1c8e)
- Update app.py (d5c67aad3ce80afdca35c02de99847b845f17bdd)
- app.py +11 -6
- data/Inria.jpg +0 -0
- data/Istanbul.jpg +0 -0
- requirements.txt +5 -3
- utils/dataloader.py +55 -0
- utils/download.py +17 -0
- utils/istanbul_unet.py +21 -0
app.py
CHANGED
|
@@ -3,13 +3,10 @@ from PIL import Image
|
|
| 3 |
import gradio as gr
|
| 4 |
import numpy
|
| 5 |
import torch
|
| 6 |
-
import os
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
model_id_list = ['deprem-ml/Binafarktespit-yolo5x-v1-xview', 'SerdarHelli/deprem_satellite_labeled_yolov8', 'kadirnar/yolov7-v0.1']
|
| 11 |
current_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
-
model_types = ["YOLOv5", "YOLOv5 + SAHI", "YOLOv8", "YOLOv7"]
|
| 13 |
|
| 14 |
def sahi_yolov5_inference(
|
| 15 |
image,
|
|
@@ -25,7 +22,7 @@ def sahi_yolov5_inference(
|
|
| 25 |
postprocess_match_threshold=0.25,
|
| 26 |
postprocess_class_agnostic=False,
|
| 27 |
):
|
| 28 |
-
|
| 29 |
rect_th = None or max(round(sum(image.size) / 2 * 0.0001), 1)
|
| 30 |
text_th = None or max(rect_th - 2, 1)
|
| 31 |
|
|
@@ -100,6 +97,12 @@ def sahi_yolov5_inference(
|
|
| 100 |
results = model([image], size=image_size)
|
| 101 |
return results.render()[0]
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
inputs = [
|
| 104 |
gr.Image(type="pil", label="Original Image"),
|
| 105 |
gr.Dropdown(choices=model_id_list,label="Choose Model",value=model_id_list[0]),
|
|
@@ -125,8 +128,10 @@ examples = [
|
|
| 125 |
["data/27.jpg", 'deprem-ml/Binafarktespit-yolo5x-v1-xview', "YOLOv5 + SAHI", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
|
| 126 |
["data/28.jpg", 'deprem-ml/Binafarktespit-yolo5x-v1-xview', "YOLOv5 + SAHI", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
|
| 127 |
["data/31.jpg", 'deprem-ml/SerdarHelli-yolov8-v1-xview', "YOLOv8", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
|
|
|
|
| 128 |
]
|
| 129 |
|
|
|
|
| 130 |
demo = gr.Interface(
|
| 131 |
sahi_yolov5_inference,
|
| 132 |
inputs,
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import numpy
|
| 5 |
import torch
|
|
|
|
| 6 |
|
| 7 |
+
model_id_list = ['deprem-ml/Binafarktespit-yolo5x-v1-xview', 'SerdarHelli/deprem_satellite_labeled_yolov8', 'kadirnar/yolov7-v0.1', 'kadirnar/UNet-EfficientNet-b6-Istanbul']
|
|
|
|
|
|
|
| 8 |
current_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
model_types = ["YOLOv5", "YOLOv5 + SAHI", "YOLOv8", "YOLOv7", "Unet-Istanbul"]
|
| 10 |
|
| 11 |
def sahi_yolov5_inference(
|
| 12 |
image,
|
|
|
|
| 22 |
postprocess_match_threshold=0.25,
|
| 23 |
postprocess_class_agnostic=False,
|
| 24 |
):
|
| 25 |
+
|
| 26 |
rect_th = None or max(round(sum(image.size) / 2 * 0.0001), 1)
|
| 27 |
text_th = None or max(rect_th - 2, 1)
|
| 28 |
|
|
|
|
| 97 |
results = model([image], size=image_size)
|
| 98 |
return results.render()[0]
|
| 99 |
|
| 100 |
+
elif model_type == "Unet-Istanbul":
|
| 101 |
+
from utils.istanbul_unet import unet_prediction
|
| 102 |
+
|
| 103 |
+
output = unet_prediction(input_path=image, model_path=model_id)
|
| 104 |
+
return output
|
| 105 |
+
|
| 106 |
inputs = [
|
| 107 |
gr.Image(type="pil", label="Original Image"),
|
| 108 |
gr.Dropdown(choices=model_id_list,label="Choose Model",value=model_id_list[0]),
|
|
|
|
| 128 |
["data/27.jpg", 'deprem-ml/Binafarktespit-yolo5x-v1-xview', "YOLOv5 + SAHI", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
|
| 129 |
["data/28.jpg", 'deprem-ml/Binafarktespit-yolo5x-v1-xview', "YOLOv5 + SAHI", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
|
| 130 |
["data/31.jpg", 'deprem-ml/SerdarHelli-yolov8-v1-xview', "YOLOv8", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
|
| 131 |
+
["data/Istanbul.jpg", 'kadirnar/UNet-EfficientNet-b6-Istanbul', "Unet-Istanbul", 512, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
|
| 132 |
]
|
| 133 |
|
| 134 |
+
|
| 135 |
demo = gr.Interface(
|
| 136 |
sahi_yolov5_inference,
|
| 137 |
inputs,
|
data/Inria.jpg
ADDED
|
data/Istanbul.jpg
ADDED
|
requirements.txt
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
-
torch==1.
|
| 2 |
-
torchvision==0.11.3
|
| 3 |
yolov5==7.0.8
|
| 4 |
sahi==0.11.11
|
| 5 |
-
yolov7detect==1.0.1
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==1.7.1
|
|
|
|
| 2 |
yolov5==7.0.8
|
| 3 |
sahi==0.11.11
|
| 4 |
+
yolov7detect==1.0.1
|
| 5 |
+
ultralyticsplus==0.0.26
|
| 6 |
+
segmentation-models-pytorch==0.1.3
|
| 7 |
+
albumentations==1.3.0
|
utils/dataloader.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import albumentations as albu
|
| 2 |
+
import numpy as np
|
| 3 |
+
import cv2
|
| 4 |
+
import os
|
| 5 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Dataset:
|
| 9 |
+
def __init__(
|
| 10 |
+
self,
|
| 11 |
+
image_path,
|
| 12 |
+
augmentation=None,
|
| 13 |
+
preprocessing=None,
|
| 14 |
+
):
|
| 15 |
+
self.pil_image = image_path
|
| 16 |
+
self.augmentation = augmentation
|
| 17 |
+
self.preprocessing = preprocessing
|
| 18 |
+
|
| 19 |
+
def get(self):
|
| 20 |
+
# pil image > numpy array
|
| 21 |
+
image = np.array(self.pil_image)
|
| 22 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 23 |
+
|
| 24 |
+
# apply augmentations
|
| 25 |
+
if self.augmentation:
|
| 26 |
+
sample = self.augmentation(image=image)
|
| 27 |
+
image = sample['image']
|
| 28 |
+
|
| 29 |
+
# apply preprocessing
|
| 30 |
+
if self.preprocessing:
|
| 31 |
+
sample = self.preprocessing(image=image)
|
| 32 |
+
image = sample['image']
|
| 33 |
+
|
| 34 |
+
return image
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def get_validation_augmentation():
|
| 38 |
+
"""Add paddings to make image shape divisible by 32"""
|
| 39 |
+
test_transform = [
|
| 40 |
+
albu.PadIfNeeded(384, 480)
|
| 41 |
+
]
|
| 42 |
+
return albu.Compose(test_transform)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def to_tensor(x, **kwargs):
|
| 46 |
+
return x.transpose(2, 0, 1).astype('float32')
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def get_preprocessing(preprocessing_fn):
|
| 50 |
+
|
| 51 |
+
_transform = [
|
| 52 |
+
albu.Lambda(image=preprocessing_fn),
|
| 53 |
+
albu.Lambda(image=to_tensor),
|
| 54 |
+
]
|
| 55 |
+
return albu.Compose(_transform)
|
utils/download.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def attempt_download_from_hub(repo_id, hf_token=None):
|
| 2 |
+
# https://github.com/fcakyon/yolov5-pip/blob/main/yolov5/utils/downloads.py
|
| 3 |
+
from huggingface_hub import hf_hub_download, list_repo_files
|
| 4 |
+
from huggingface_hub.utils._errors import RepositoryNotFoundError
|
| 5 |
+
from huggingface_hub.utils._validators import HFValidationError
|
| 6 |
+
try:
|
| 7 |
+
repo_files = list_repo_files(repo_id=repo_id, repo_type='model', token=hf_token)
|
| 8 |
+
model_file = [f for f in repo_files if f.endswith('.pth')][0]
|
| 9 |
+
file = hf_hub_download(
|
| 10 |
+
repo_id=repo_id,
|
| 11 |
+
filename=model_file,
|
| 12 |
+
repo_type='model',
|
| 13 |
+
token=hf_token,
|
| 14 |
+
)
|
| 15 |
+
return file
|
| 16 |
+
except (RepositoryNotFoundError, HFValidationError):
|
| 17 |
+
return None
|
utils/istanbul_unet.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from utils.download import attempt_download_from_hub
|
| 2 |
+
import segmentation_models_pytorch as smp
|
| 3 |
+
from utils.dataloader import *
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def unet_prediction(input_path, model_path):
|
| 8 |
+
model_path = attempt_download_from_hub(model_path)
|
| 9 |
+
best_model = torch.load(model_path)
|
| 10 |
+
preprocessing_fn = smp.encoders.get_preprocessing_fn('efficientnet-b6', 'imagenet')
|
| 11 |
+
|
| 12 |
+
test_dataset = Dataset(input_path, augmentation=get_validation_augmentation(), preprocessing=get_preprocessing(preprocessing_fn))
|
| 13 |
+
image = test_dataset.get()
|
| 14 |
+
|
| 15 |
+
x_tensor = torch.from_numpy(image).to("cuda").unsqueeze(0)
|
| 16 |
+
pr_mask = best_model.predict(x_tensor)
|
| 17 |
+
pr_mask = (pr_mask.squeeze().cpu().numpy().round())*255
|
| 18 |
+
|
| 19 |
+
# Save the predicted mask
|
| 20 |
+
cv2.imwrite("output.png", pr_mask)
|
| 21 |
+
return 'output.png'
|