Update app.py
Browse files
app.py
CHANGED
@@ -65,47 +65,155 @@ with gr.Blocks() as demo:
|
|
65 |
with gr.Tabs():
|
66 |
# Memory Calculation Tab
|
67 |
with gr.TabItem("Memory Calculation"):
|
68 |
-
hf_model_name_or_path = gr.Textbox(
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
memory_result = gr.Textbox(label="Memory Calculation Result", interactive=False)
|
83 |
calc_memory_button = gr.Button("Calculate Memory")
|
84 |
-
calc_memory_button.click(
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
hf_model_name_or_path.change(
|
|
|
89 |
inputs=[hf_model_name_or_path],
|
90 |
-
outputs=[num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length, memory_result]
|
|
|
91 |
|
92 |
# Parameter Calculation Tab
|
93 |
with gr.TabItem("Parameter Calculation"):
|
94 |
-
hf_model_name_or_path = gr.Textbox(
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
with gr.Accordion("MoE Parameters", open=False):
|
105 |
-
moe = gr.Checkbox(
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
param_result = gr.Textbox(label="Parameter Calculation Result", interactive=False)
|
111 |
calc_param_button = gr.Button("Calculate Parameters")
|
|
|
65 |
with gr.Tabs():
|
66 |
# Memory Calculation Tab
|
67 |
with gr.TabItem("Memory Calculation"):
|
68 |
+
hf_model_name_or_path = gr.Textbox(
|
69 |
+
label="HuggingFace Model Name or Path",
|
70 |
+
info="Name of the HuggingFace Hub repository or the local file path for it"
|
71 |
+
)
|
72 |
+
num_gpus = gr.Number(
|
73 |
+
label="Number of GPUs",
|
74 |
+
value=1,
|
75 |
+
info="Number of GPUs used for training"
|
76 |
+
)
|
77 |
+
tensor_parallel_size = gr.Number(
|
78 |
+
label="Tensor Parallel Size",
|
79 |
+
value=1,
|
80 |
+
info="Tensor parallel degree (1 if not used)"
|
81 |
+
)
|
82 |
+
pipeline_parallel_size = gr.Number(
|
83 |
+
label="Pipeline Parallel Size",
|
84 |
+
value=1,
|
85 |
+
info="Pipeline parallel degree (1 if not used)"
|
86 |
+
)
|
87 |
+
batch_size_per_gpu = gr.Number(
|
88 |
+
label="Batch Size per GPU",
|
89 |
+
value=8,
|
90 |
+
info="Batch size per GPU"
|
91 |
+
)
|
92 |
+
sequence_length = gr.Number(
|
93 |
+
label="Sequence Length",
|
94 |
+
value=2048,
|
95 |
+
info="Sequence length used for training"
|
96 |
+
)
|
97 |
+
vocab_size = gr.Number(
|
98 |
+
label="Vocab Size",
|
99 |
+
value=51200,
|
100 |
+
info="How many tokens are in the embedding layer"
|
101 |
+
)
|
102 |
+
hidden_size = gr.Number(
|
103 |
+
label="Hidden Size",
|
104 |
+
value=6144,
|
105 |
+
info="Dimension of the model's hidden size"
|
106 |
+
)
|
107 |
+
num_attention_heads = gr.Number(
|
108 |
+
label="Number of Attention Heads",
|
109 |
+
value=64,
|
110 |
+
info="Number of attention heads used in the model"
|
111 |
+
)
|
112 |
+
num_layers = gr.Number(
|
113 |
+
label="Number of Layers",
|
114 |
+
value=44,
|
115 |
+
info="Number of transformer layers used in the model"
|
116 |
+
)
|
117 |
+
ffn_expansion_factor = gr.Number(
|
118 |
+
label="FFN Expansion Factor",
|
119 |
+
value=4,
|
120 |
+
info="How much the MLP hidden size expands"
|
121 |
+
)
|
122 |
+
is_mixed_precision = gr.Checkbox(
|
123 |
+
label="Mixed Precision",
|
124 |
+
value=True,
|
125 |
+
info="Whether mixed precision is enabled"
|
126 |
+
)
|
127 |
+
misc_mem_gib = gr.Number(
|
128 |
+
label="Miscellaneous Memory Overhead (GiB)",
|
129 |
+
value=5,
|
130 |
+
info="Miscellaneous memory overhead per GPU by DL frameworks, communication libraries, etc."
|
131 |
+
)
|
132 |
|
133 |
memory_result = gr.Textbox(label="Memory Calculation Result", interactive=False)
|
134 |
calc_memory_button = gr.Button("Calculate Memory")
|
135 |
+
calc_memory_button.click(
|
136 |
+
calc_mem,
|
137 |
+
inputs=[
|
138 |
+
hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib
|
139 |
+
],
|
140 |
+
outputs=memory_result
|
141 |
+
)
|
142 |
|
143 |
+
hf_model_name_or_path.change(
|
144 |
+
fn=update_from_hf_model,
|
145 |
inputs=[hf_model_name_or_path],
|
146 |
+
outputs=[num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length, memory_result]
|
147 |
+
)
|
148 |
|
149 |
# Parameter Calculation Tab
|
150 |
with gr.TabItem("Parameter Calculation"):
|
151 |
+
hf_model_name_or_path = gr.Textbox(
|
152 |
+
label="HuggingFace Model Name or Path",
|
153 |
+
info="Name of the HuggingFace Hub repository or the local file path for it"
|
154 |
+
)
|
155 |
+
vocab_size = gr.Number(
|
156 |
+
label="Vocab Size",
|
157 |
+
value=51200,
|
158 |
+
info="How many tokens are in the embedding layer"
|
159 |
+
)
|
160 |
+
tied_embeddings = gr.Checkbox(
|
161 |
+
label="Tied Embeddings",
|
162 |
+
value=False,
|
163 |
+
info="Whether embeddings are tied (shared between input and output)"
|
164 |
+
)
|
165 |
+
hidden_size = gr.Number(
|
166 |
+
label="Hidden Size",
|
167 |
+
value=6144,
|
168 |
+
info="Dimension of the model's hidden size"
|
169 |
+
)
|
170 |
+
sequence_length = gr.Number(
|
171 |
+
label="Sequence Length",
|
172 |
+
value=2048,
|
173 |
+
info="Sequence length used for training"
|
174 |
+
)
|
175 |
+
num_layers = gr.Number(
|
176 |
+
label="Number of Layers",
|
177 |
+
value=44,
|
178 |
+
info="Number of transformer layers used in the model"
|
179 |
+
)
|
180 |
+
ffn_expansion_factor = gr.Number(
|
181 |
+
label="FFN Expansion Factor",
|
182 |
+
value=4,
|
183 |
+
info="How much the MLP hidden size expands"
|
184 |
+
)
|
185 |
+
num_mlp_linears = gr.Number(
|
186 |
+
label="Number of Linear Layers per MLP Block",
|
187 |
+
value=2,
|
188 |
+
info="How many linear layers per MLP block"
|
189 |
+
)
|
190 |
+
kv_size_ratio = gr.Number(
|
191 |
+
label="KV Size Ratio",
|
192 |
+
value=1.0,
|
193 |
+
info="Ratio of total query heads to key/value heads. 1.0 for MHA, 1/num_attention_heads for MQA"
|
194 |
+
)
|
195 |
|
196 |
with gr.Accordion("MoE Parameters", open=False):
|
197 |
+
moe = gr.Checkbox(
|
198 |
+
label="MoE",
|
199 |
+
value=False,
|
200 |
+
info="Whether the model is MoE"
|
201 |
+
)
|
202 |
+
num_experts = gr.Number(
|
203 |
+
label="Number of Experts",
|
204 |
+
value=8,
|
205 |
+
info="Number of experts for MoE"
|
206 |
+
)
|
207 |
+
expert_interval = gr.Number(
|
208 |
+
label="Expert Interval",
|
209 |
+
value=1,
|
210 |
+
info="Expert interval for MoE"
|
211 |
+
)
|
212 |
+
topk = gr.Number(
|
213 |
+
label="Top k Routing",
|
214 |
+
value=1,
|
215 |
+
info="Top k routing for MoE"
|
216 |
+
)
|
217 |
|
218 |
param_result = gr.Textbox(label="Parameter Calculation Result", interactive=False)
|
219 |
calc_param_button = gr.Button("Calculate Parameters")
|