File size: 24,488 Bytes
f0fcc66
 
 
 
 
9e5447d
 
f0fcc66
 
 
6165359
 
f0fcc66
 
6165359
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0fcc66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e70b261
f0fcc66
 
 
6165359
f0fcc66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6165359
f0fcc66
 
 
 
 
6165359
f0fcc66
 
6165359
f0fcc66
 
 
 
 
 
 
 
6165359
f0fcc66
 
 
6165359
f0fcc66
 
 
 
 
 
 
 
 
 
 
 
b64eca0
 
 
f0fcc66
 
 
 
 
 
 
 
 
 
 
 
b64eca0
f0fcc66
 
 
 
 
 
 
 
 
6165359
f0fcc66
 
 
6165359
f0fcc66
 
 
 
 
 
 
6165359
f0fcc66
 
 
 
 
 
 
 
 
 
 
6165359
f0fcc66
6165359
f0fcc66
 
 
 
6165359
f0fcc66
 
 
 
 
 
9e5447d
 
 
 
 
6165359
 
9e5447d
 
 
 
 
6165359
9e5447d
 
 
 
 
 
 
 
 
 
 
 
6165359
9e5447d
 
f0fcc66
6165359
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd31dbe
 
 
 
 
 
 
 
 
f0fcc66
 
6165359
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0fcc66
 
9e5447d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import torch
import gradio as gr
from diffusers import FluxPipeline, FluxTransformer2DModel
import gc
import random
import glob
from pathlib import Path
from PIL import Image
import os
import time
import json
from fasteners import InterProcessLock
import spaces

AGG_FILE = Path(__file__).parent / "agg_stats.json"
LOCK_FILE = AGG_FILE.with_suffix(".lock")

def _load_agg_stats() -> dict:
    if AGG_FILE.exists():
        with open(AGG_FILE, "r") as f:
            try:
                return json.load(f)
            except json.JSONDecodeError:
                print(f"Warning: {AGG_FILE} is corrupted. Starting with empty stats.")
                return {"8-bit": {"attempts": 0, "correct": 0}, "4-bit": {"attempts": 0, "correct": 0}}
    return {"8-bit": {"attempts": 0, "correct": 0},
            "4-bit": {"attempts": 0, "correct": 0}}

def _save_agg_stats(stats: dict) -> None:
    with InterProcessLock(str(LOCK_FILE)):
        with open(AGG_FILE, "w") as f:
            json.dump(stats, f, indent=2)

USER_STATS_FILE = Path(__file__).parent / "user_stats.json"
USER_STATS_LOCK_FILE = USER_STATS_FILE.with_suffix(".lock")

def _load_user_stats() -> dict:
    if USER_STATS_FILE.exists():
        with open(USER_STATS_FILE, "r") as f:
            try:
                return json.load(f)
            except json.JSONDecodeError:
                print(f"Warning: {USER_STATS_FILE} is corrupted. Starting with empty user stats.")
                return {}
    return {}

def _save_user_stats(stats: dict) -> None:
    with InterProcessLock(str(USER_STATS_LOCK_FILE)):
        with open(USER_STATS_FILE, "w") as f:
            json.dump(stats, f, indent=2)

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")

DEFAULT_HEIGHT = 1024
DEFAULT_WIDTH = 1024
DEFAULT_GUIDANCE_SCALE = 3.5
DEFAULT_NUM_INFERENCE_STEPS = 15
DEFAULT_MAX_SEQUENCE_LENGTH = 512
HF_TOKEN = os.environ.get("HF_ACCESS_TOKEN")

CACHED_PIPES = {}
def load_bf16_pipeline():
    print("Loading BF16 pipeline...")
    MODEL_ID = "black-forest-labs/FLUX.1-dev"
    if MODEL_ID in CACHED_PIPES:
        return CACHED_PIPES[MODEL_ID]
    start_time = time.time()
    try:
        pipe = FluxPipeline.from_pretrained(
            MODEL_ID,
            torch_dtype=torch.bfloat16,
                token=HF_TOKEN
        )
        pipe.to(DEVICE)
        end_time = time.time()
        mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
        print(f"BF16 Pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
        CACHED_PIPES[MODEL_ID] = pipe
        return pipe
    except Exception as e:
        print(f"Error loading BF16 pipeline: {e}")
        raise

def load_bnb_8bit_pipeline():
    print("Loading 8-bit BNB pipeline...")
    MODEL_ID = "derekl35/FLUX.1-dev-bnb-8bit"
    if MODEL_ID in CACHED_PIPES:
        return CACHED_PIPES[MODEL_ID]
    start_time = time.time()
    try:
        pipe = FluxPipeline.from_pretrained(
            MODEL_ID,
            torch_dtype=torch.bfloat16
        )
        pipe.to(DEVICE)
        # pipe.enable_model_cpu_offload()
        end_time = time.time()
        mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
        print(f"8-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
        CACHED_PIPES[MODEL_ID] = pipe
        return pipe
    except Exception as e:
        print(f"Error loading 8-bit BNB pipeline: {e}")
        raise

def load_bnb_4bit_pipeline():
    print("Loading 4-bit BNB pipeline...")
    MODEL_ID = "derekl35/FLUX.1-dev-nf4"
    if MODEL_ID in CACHED_PIPES:
        return CACHED_PIPES[MODEL_ID]
    start_time = time.time()
    try:
        pipe = FluxPipeline.from_pretrained(
            MODEL_ID,
            torch_dtype=torch.bfloat16
        )
        pipe.to(DEVICE)
        # pipe.enable_model_cpu_offload()
        end_time = time.time()
        mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
        print(f"4-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
        CACHED_PIPES[MODEL_ID] = pipe
        return pipe
    except Exception as e:
        print(f"Error loading 4-bit BNB pipeline: {e}")
        raise

@spaces.GPU(duration=240)
def generate_images(prompt, quantization_choice, progress=gr.Progress(track_tqdm=True)):
    if not prompt:
        return None, {}, gr.update(value="Please enter a prompt.", interactive=False), gr.update(choices=[], value=None), gr.update(interactive=True), gr.update(interactive=True)

    if not quantization_choice:
        return None, {}, gr.update(value="Please select a quantization method.", interactive=False), gr.update(choices=[], value=None), gr.update(interactive=True), gr.update(interactive=True)

    if quantization_choice == "8-bit":
        quantized_load_func = load_bnb_8bit_pipeline
        quantized_label = "Quantized (8-bit)"
    elif quantization_choice == "4-bit":
        quantized_load_func = load_bnb_4bit_pipeline
        quantized_label = "Quantized (4-bit)"
    else:
        return None, {}, gr.update(value="Invalid quantization choice.", interactive=False), gr.update(choices=[], value=None), gr.update(interactive=True), gr.update(interactive=True)

    model_configs = [
        ("Original", load_bf16_pipeline),
        (quantized_label, quantized_load_func),
    ]

    results = []
    pipe_kwargs = {
        "prompt": prompt,
        "height": DEFAULT_HEIGHT,
        "width": DEFAULT_WIDTH,
        "guidance_scale": DEFAULT_GUIDANCE_SCALE,
        "num_inference_steps": DEFAULT_NUM_INFERENCE_STEPS,
        "max_sequence_length": DEFAULT_MAX_SEQUENCE_LENGTH,
    }

    seed = random.getrandbits(64)
    print(f"Using seed: {seed}")

    for i, (label, load_func) in enumerate(model_configs):
        progress(i / len(model_configs), desc=f"Loading {label} model...")
        print(f"\n--- Loading {label} Model ---")
        load_start_time = time.time()
        try:
            current_pipe = load_func()
            load_end_time = time.time()
            print(f"{label} model loaded in {load_end_time - load_start_time:.2f} seconds.")

            progress((i + 0.5) / len(model_configs), desc=f"Generating with {label} model...")
            print(f"--- Generating with {label} Model ---")
            gen_start_time = time.time()
            image_list = current_pipe(**pipe_kwargs, generator=torch.manual_seed(seed)).images
            image = image_list[0]
            gen_end_time = time.time()
            results.append({"label": label, "image": image})
            print(f"--- Finished Generation with {label} Model in {gen_end_time - gen_start_time:.2f} seconds ---")
            mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
            print(f"Memory reserved: {mem_reserved:.2f} GB")

        except Exception as e:
            print(f"Error during {label} model processing: {e}")
            return None, {}, gr.update(value=f"Error processing {label} model: {e}", interactive=False), gr.update(choices=[], value=None), gr.update(interactive=True), gr.update(interactive=True)


    if len(results) != len(model_configs):
        return None, {}, gr.update(value="Failed to generate images for all model types.", interactive=False), gr.update(choices=[], value=None), gr.update(interactive=True), gr.update(interactive=True)

    shuffled_results = results.copy()
    random.shuffle(shuffled_results)
    shuffled_data_for_gallery = [(res["image"], f"Image {i+1}") for i, res in enumerate(shuffled_results)]
    correct_mapping = {i: res["label"] for i, res in enumerate(shuffled_results)}
    print("Correct mapping (hidden):", correct_mapping)

    return shuffled_data_for_gallery, correct_mapping, "Generation complete! Make your guess.", None, gr.update(interactive=True), gr.update(interactive=True)


def check_guess(user_guess, correct_mapping_state):
    if not isinstance(correct_mapping_state, dict) or not correct_mapping_state:
        return "Please generate images first (state is empty or invalid)."
    if user_guess is None:
        return "Please select which image you think is quantized."

    quantized_image_index = -1
    quantized_label_actual = ""
    for index, label in correct_mapping_state.items():
        if "Quantized" in label:
            quantized_image_index = index
            quantized_label_actual = label
            break
    if quantized_image_index == -1:
        return "Error: Could not find the quantized image in the mapping data."

    correct_guess_label = f"Image {quantized_image_index + 1}"
    if user_guess == correct_guess_label:
        feedback = f"Correct! {correct_guess_label} used the {quantized_label_actual} model."
    else:
        feedback = f"Incorrect. The quantized image ({quantized_label_actual}) was {correct_guess_label}."
    return feedback

EXAMPLE_DIR = Path(__file__).parent / "examples"
EXAMPLES = [
    {
        "prompt": "A photorealistic portrait of an astronaut on Mars",
        "files": ["astronauts_seed_6456306350371904162.png", "astronauts_bnb_8bit.png"],
        "quantized_idx": 1,
        "quant_method": "bnb 8-bit",
    },
    {
        "prompt": "Water-color painting of a cat wearing sunglasses",
        "files": ["watercolor_cat_bnb_8bit.png", "watercolor_cat_seed_14269059182221286790.png"],
        "quantized_idx": 0,
        "quant_method": "bnb 8-bit",
    },
    # {
    #     "prompt": "Neo-tokyo cyberpunk cityscape at night, rain-soaked streets, 8-K",
    #     "files": ["cyber_city_q.jpg", "cyber_city.jpg"],
    #     "quantized_idx": 0,
    # },
]

def load_example(idx):
    ex = EXAMPLES[idx]
    imgs = [Image.open(EXAMPLE_DIR / f) for f in ex["files"]]
    gallery_items = [(img, f"Image {i+1}") for i, img in enumerate(imgs)]
    mapping = {i: (f"Quantized {ex['quant_method']}" if i == ex["quantized_idx"] else "Original")
               for i in range(2)}
    return gallery_items, mapping, f"{ex['prompt']}"

def _accuracy_string(correct: int, attempts: int) -> tuple[str, float]:
    if attempts:
        pct = 100 * correct / attempts
        return f"{pct:.1f}%", pct
    return "N/A", -1.0

def _add_medals(user_rows):
    MEDALS = {0: "🥇 ", 1: "🥈 ", 2: "🥉 "}
    return [
        [MEDALS.get(i, "") + row[0], *row[1:]]
        for i, row in enumerate(user_rows)
    ]

def update_leaderboards_data():
    agg = _load_agg_stats()
    quant_rows = []
    for method, stats in agg.items():
        acc_str, acc_val = _accuracy_string(stats["correct"], stats["attempts"])
        quant_rows.append([
            method,
            stats["correct"],
            stats["attempts"],
            acc_str
        ])
    quant_rows.sort(key=lambda r: r[1]/r[2] if r[2] != 0 else 1e9)

    user_stats = _load_user_stats()
    user_rows = []
    for user, st in user_stats.items():
        acc_str, acc_val = _accuracy_string(st["total_correct"], st["total_attempts"])
        user_rows.append([user, st["total_correct"], st["total_attempts"], acc_str])
    user_rows.sort(key=lambda r: (-float(r[3].rstrip('%')) if r[3] != "N/A" else float('-inf'), -r[2]))
    user_rows = _add_medals(user_rows)

    return quant_rows, user_rows

quant_df = gr.DataFrame(
    headers=["Method", "Correct Guesses", "Total Attempts", "Detectability %"],
    interactive=False, col_count=(4, "fixed")
)
user_df = gr.DataFrame(
    headers=["User", "Correct Guesses", "Total Attempts", "Accuracy %"],
    interactive=False, col_count=(4, "fixed")
)

with gr.Blocks(title="FLUX Quantization Challenge", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# FLUX Model Quantization Challenge")
    with gr.Tabs():
        with gr.TabItem("Challenge"):
            gr.Markdown(
                "Compare the original FLUX.1-dev (BF16) model against a quantized version (4-bit or 8-bit). "
                "Enter a prompt, choose the quantization method, and generate two images. "
                "The images will be shuffled, can you spot which one was quantized?"
            )

            gr.Markdown("### Examples")
            ex_selector = gr.Radio(
                choices=[f"Example {i+1}" for i in range(len(EXAMPLES))],
                label="Choose an example prompt",
                interactive=True,
            )
            gr.Markdown("### …or create your own comparison")
            with gr.Row():
                prompt_input = gr.Textbox(label="Enter Prompt", scale=3)
                quantization_choice_radio = gr.Radio(
                    choices=["8-bit", "4-bit"],
                    label="Select Quantization",
                    value="8-bit",
                    scale=1
                )
                generate_button = gr.Button("Generate & Compare", variant="primary", scale=1)

            output_gallery = gr.Gallery(
                label="Generated Images",
                columns=2,
                height=606,
                object_fit="contain",
                allow_preview=True,
                show_label=True,
            )

            gr.Markdown("### Which image used the selected quantization method?")
            with gr.Row():
                image1_btn = gr.Button("Image 1")
                image2_btn = gr.Button("Image 2")

            feedback_box = gr.Textbox(label="Feedback", interactive=False, lines=1)

            with gr.Row():
                session_score_box  = gr.Textbox(label="Your accuracy this session", interactive=False)

            with gr.Row(equal_height=False):
                username_input = gr.Textbox(
                    label="Enter Your Name for Leaderboard",
                    placeholder="YourName",
                    visible=False,
                    interactive=True,
                    scale=2
                )
                add_score_button = gr.Button(
                    "Add My Score to Leaderboard",
                    visible=False,
                    variant="secondary",
                    scale=1
                )
            add_score_feedback = gr.Textbox(
                label="Leaderboard Update",
                visible=False,
                interactive=False,
                lines=1
            )

            correct_mapping_state = gr.State({})
            session_stats_state = gr.State(
                {"8-bit": {"attempts": 0, "correct": 0},
                "4-bit": {"attempts": 0, "correct": 0}}
            )
            is_example_state = gr.State(False)
            has_added_score_state = gr.State(False)

            def _load_example(sel):
                idx = int(sel.split()[-1]) - 1
                gallery_items, mapping, prompt = load_example(idx)
                quant_data, user_data = update_leaderboards_data()
                return gallery_items, mapping, prompt, True, quant_data, user_data

            ex_selector.change(
                fn=_load_example,
                inputs=ex_selector,
                outputs=[output_gallery, correct_mapping_state, prompt_input, is_example_state, quant_df, user_df],
            ).then(
                lambda: (gr.update(interactive=True), gr.update(interactive=True)),
                outputs=[image1_btn, image2_btn],
            )

            generate_button.click(
                fn=generate_images,
                inputs=[prompt_input, quantization_choice_radio],
                outputs=[output_gallery, correct_mapping_state]
            ).then(
                lambda: (False, # for is_example_state
                         False, # for has_added_score_state
                         gr.update(visible=False, value="", interactive=True), # username_input reset
                         gr.update(visible=False), # add_score_button reset
                         gr.update(visible=False, value="")), # add_score_feedback reset
                outputs=[is_example_state,
                         has_added_score_state,
                         username_input,
                         add_score_button,
                         add_score_feedback]
            ).then(
                lambda: (gr.update(interactive=True),
                        gr.update(interactive=True),
                        ""),
                outputs=[image1_btn, image2_btn, feedback_box],
            )

            def choose(choice_string, mapping, session_stats, is_example, has_added_score_curr):
                feedback = check_guess(choice_string, mapping)

                quant_label = next(label for label in mapping.values() if "Quantized" in label)
                quant_key = "8-bit" if "8-bit" in quant_label else "4-bit"

                got_it_right = "Correct!" in feedback

                sess = session_stats.copy()
                if not is_example and not has_added_score_curr:
                    sess[quant_key]["attempts"] += 1
                    if got_it_right:
                        sess[quant_key]["correct"] += 1
                    session_stats = sess

                    AGG_STATS = _load_agg_stats()
                    AGG_STATS[quant_key]["attempts"] += 1
                    if got_it_right:
                        AGG_STATS[quant_key]["correct"] += 1
                    _save_agg_stats(AGG_STATS)

                def _fmt(d):
                    a, c = d["attempts"], d["correct"]
                    pct = 100 * c / a if a else 0
                    return f"{c} / {a}  ({pct:.1f}%)"

                session_msg = ", ".join(
                    f"{k}: {_fmt(v)}" for k, v in sess.items()
                )
                current_agg_stats = _load_agg_stats()
                global_msg = ", ".join(
                    f"{k}: {_fmt(v)}" for k, v in current_agg_stats.items()
                )

                username_input_update = gr.update(visible=False, interactive=True)
                add_score_button_update = gr.update(visible=False)
                # Keep existing feedback if score was already added and feedback is visible
                current_feedback_text = add_score_feedback.value if hasattr(add_score_feedback, 'value') and add_score_feedback.value else ""
                add_score_feedback_update = gr.update(visible=has_added_score_curr, value=current_feedback_text)

                session_total_attempts = sum(stats["attempts"] for stats in sess.values())

                if not is_example and not has_added_score_curr:
                    if session_total_attempts >= 1 : # Show button if more than 1 attempt
                        username_input_update = gr.update(visible=True, interactive=True)
                        add_score_button_update = gr.update(visible=True, interactive=True)
                        add_score_feedback_update = gr.update(visible=False, value="")
                    else: # Less than 1 attempts, keep hidden
                        username_input_update = gr.update(visible=False, value=username_input.value if hasattr(username_input, 'value') else "")
                        add_score_button_update = gr.update(visible=False)
                        add_score_feedback_update = gr.update(visible=False, value="")
                elif has_added_score_curr:
                    username_input_update = gr.update(visible=True, interactive=False, value=username_input.value if hasattr(username_input, 'value') else "")
                    add_score_button_update = gr.update(visible=True, interactive=False)
                    add_score_feedback_update = gr.update(visible=True)

                # disable the buttons so the user can't vote twice
                quant_data, user_data = update_leaderboards_data() # Get updated leaderboard data
                return (feedback,
                        gr.update(interactive=False),
                        gr.update(interactive=False),
                        session_msg,
                        session_stats,
                        quant_data,
                        user_data,
                        username_input_update,
                        add_score_button_update,
                        add_score_feedback_update)


            image1_btn.click(
                fn=lambda mapping, sess, is_ex, has_added: choose("Image 1", mapping, sess, is_ex, has_added),
                inputs=[correct_mapping_state, session_stats_state, is_example_state, has_added_score_state],
                outputs=[feedback_box, image1_btn, image2_btn,
                        session_score_box, session_stats_state,
                        quant_df, user_df,
                        username_input, add_score_button, add_score_feedback],
            )
            image2_btn.click(
                fn=lambda mapping, sess, is_ex, has_added: choose("Image 2", mapping, sess, is_ex, has_added),
                inputs=[correct_mapping_state, session_stats_state, is_example_state, has_added_score_state],
                outputs=[feedback_box, image1_btn, image2_btn,
                        session_score_box, session_stats_state,
                        quant_df, user_df,
                        username_input, add_score_button, add_score_feedback],
            )

            def handle_add_score_to_leaderboard(username_str, current_session_stats_dict):
                if not username_str or not username_str.strip():
                    return ("Username is required.",  # Feedback for add_score_feedback
                            gr.update(interactive=True),    # username_input
                            gr.update(interactive=True),    # add_score_button
                            False,                          # has_added_score_state
                            None, None)                     # quant_df, user_df

                user_stats = _load_user_stats()
                user_key = username_str.strip()

                session_total_correct = sum(stats["correct"] for stats in current_session_stats_dict.values())
                session_total_attempts = sum(stats["attempts"] for stats in current_session_stats_dict.values())

                if session_total_attempts == 0:
                     return ("No attempts made in this session to add to leaderboard.",
                            gr.update(interactive=True),
                            gr.update(interactive=True),
                            False, None, None)

                if user_key in user_stats:
                    user_stats[user_key]["total_correct"] += session_total_correct
                    user_stats[user_key]["total_attempts"] += session_total_attempts
                else:
                    user_stats[user_key] = {
                        "total_correct": session_total_correct,
                        "total_attempts": session_total_attempts
                    }
                _save_user_stats(user_stats)
                
                new_quant_data, new_user_data = update_leaderboards_data()
                feedback_msg = f"Score for '{user_key}' submitted to leaderboard!"
                return (feedback_msg,                   # To add_score_feedback
                        gr.update(interactive=False),   # username_input
                        gr.update(interactive=False),   # add_score_button
                        True,                           # has_added_score_state (set to true)
                        new_quant_data,                 # To quant_df
                        new_user_data)                  # To user_df

            add_score_button.click(
                fn=handle_add_score_to_leaderboard,
                inputs=[username_input, session_stats_state],
                outputs=[add_score_feedback, username_input, add_score_button, has_added_score_state, quant_df, user_df]
            )
        with gr.TabItem("Leaderboard"):
            gr.Markdown("## Quantization Method Leaderboard  *(Lower % ⇒ harder to detect)*")
            quant_df = gr.DataFrame(
                headers=["Method", "Correct Guesses", "Total Attempts", "Detectability %"],
                interactive=False, col_count=(4, "fixed")
            )
            gr.Markdown("## User Leaderboard  *(Higher % ⇒ better spotter)*")
            user_df = gr.DataFrame(
                headers=["User", "Correct Guesses", "Total Attempts", "Accuracy %"],
                interactive=False, col_count=(4, "fixed")
            )
            demo.load(update_leaderboards_data, outputs=[quant_df, user_df])

if __name__ == "__main__":
    demo.launch(share=True)