import torch import gradio as gr from diffusers import FluxPipeline, FluxTransformer2DModel import gc import random import glob from pathlib import Path from PIL import Image import os import time import json from fasteners import InterProcessLock import spaces from datasets import Dataset, Image as HFImage, load_dataset from datasets import Features, Value from datasets import concatenate_datasets from datetime import datetime AGG_FILE = Path(__file__).parent / "agg_stats.json" LOCK_FILE = AGG_FILE.with_suffix(".lock") def _load_agg_stats() -> dict: if AGG_FILE.exists(): with open(AGG_FILE, "r") as f: try: return json.load(f) except json.JSONDecodeError: print(f"Warning: {AGG_FILE} is corrupted. Starting with empty stats.") return {"8-bit bnb": {"attempts": 0, "correct": 0}, "4-bit bnb": {"attempts": 0, "correct": 0}} return {"8-bit bnb": {"attempts": 0, "correct": 0}, "4-bit bnb": {"attempts": 0, "correct": 0}} def _save_agg_stats(stats: dict) -> None: with InterProcessLock(str(LOCK_FILE)): with open(AGG_FILE, "w") as f: json.dump(stats, f, indent=2) DEVICE = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {DEVICE}") DEFAULT_HEIGHT = 1024 DEFAULT_WIDTH = 1024 DEFAULT_GUIDANCE_SCALE = 3.5 DEFAULT_NUM_INFERENCE_STEPS = 15 DEFAULT_MAX_SEQUENCE_LENGTH = 512 HF_TOKEN = os.environ.get("HF_ACCESS_TOKEN") HF_DATASET_REPO_ID = "diffusers/flux-quant-challenge-submissions" CACHED_PIPES = {} def load_bf16_pipeline(): print("Loading BF16 pipeline...") MODEL_ID = "black-forest-labs/FLUX.1-dev" if MODEL_ID in CACHED_PIPES: return CACHED_PIPES[MODEL_ID] start_time = time.time() try: pipe = FluxPipeline.from_pretrained( MODEL_ID, torch_dtype=torch.bfloat16, token=HF_TOKEN ) # pipe.to(DEVICE) pipe.enable_model_cpu_offload() end_time = time.time() mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0 print(f"BF16 Pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB") CACHED_PIPES[MODEL_ID] = pipe return pipe except Exception as e: print(f"Error loading BF16 pipeline: {e}") raise def load_bnb_8bit_pipeline(): print("Loading 8-bit BNB pipeline...") MODEL_ID = "derekl35/FLUX.1-dev-bnb-8bit" if MODEL_ID in CACHED_PIPES: return CACHED_PIPES[MODEL_ID] start_time = time.time() try: pipe = FluxPipeline.from_pretrained( MODEL_ID, torch_dtype=torch.bfloat16 ) # pipe.to(DEVICE) pipe.enable_model_cpu_offload() end_time = time.time() mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0 print(f"8-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB") CACHED_PIPES[MODEL_ID] = pipe return pipe except Exception as e: print(f"Error loading 8-bit BNB pipeline: {e}") raise def load_bnb_4bit_pipeline(): print("Loading 4-bit BNB pipeline...") MODEL_ID = "derekl35/FLUX.1-dev-nf4" if MODEL_ID in CACHED_PIPES: return CACHED_PIPES[MODEL_ID] start_time = time.time() try: pipe = FluxPipeline.from_pretrained( MODEL_ID, torch_dtype=torch.bfloat16 ) # pipe.to(DEVICE) pipe.enable_model_cpu_offload() end_time = time.time() mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0 print(f"4-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB") CACHED_PIPES[MODEL_ID] = pipe return pipe except Exception as e: print(f"Error loading 4-bit BNB pipeline: {e}") raise @spaces.GPU(duration=240) def generate_images(prompt, quantization_choice, progress=gr.Progress(track_tqdm=True)): if not prompt: return None, {}, gr.update(value="Please enter a prompt.", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True) if not quantization_choice: return None, {}, gr.update(value="Please select a quantization method.", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True) if quantization_choice == "8-bit bnb": quantized_load_func = load_bnb_8bit_pipeline quantized_label = "Quantized (8-bit bnb)" elif quantization_choice == "4-bit bnb": quantized_load_func = load_bnb_4bit_pipeline quantized_label = "Quantized (4-bit bnb)" else: return None, {}, gr.update(value="Invalid quantization choice.", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True) model_configs = [ ("Original", load_bf16_pipeline), (quantized_label, quantized_load_func), ] results = [] pipe_kwargs = { "prompt": prompt, "height": DEFAULT_HEIGHT, "width": DEFAULT_WIDTH, "guidance_scale": DEFAULT_GUIDANCE_SCALE, "num_inference_steps": DEFAULT_NUM_INFERENCE_STEPS, "max_sequence_length": DEFAULT_MAX_SEQUENCE_LENGTH, } seed = random.getrandbits(64) print(f"Using seed: {seed}") for i, (label, load_func) in enumerate(model_configs): progress(i / len(model_configs), desc=f"Loading {label} model...") print(f"\n--- Loading {label} Model ---") load_start_time = time.time() try: current_pipe = load_func() load_end_time = time.time() print(f"{label} model loaded in {load_end_time - load_start_time:.2f} seconds.") progress((i + 0.5) / len(model_configs), desc=f"Generating with {label} model...") print(f"--- Generating with {label} Model ---") gen_start_time = time.time() image_list = current_pipe(**pipe_kwargs, generator=torch.manual_seed(seed)).images image = image_list[0] gen_end_time = time.time() results.append({"label": label, "image": image}) print(f"--- Finished Generation with {label} Model in {gen_end_time - gen_start_time:.2f} seconds ---") mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0 print(f"Memory reserved: {mem_reserved:.2f} GB") except Exception as e: print(f"Error during {label} model processing: {e}") return None, {}, gr.update(value=f"Error processing {label} model: {e}", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True) if len(results) != len(model_configs): return None, {}, gr.update(value="Failed to generate images for all model types.", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True) shuffled_results = results.copy() random.shuffle(shuffled_results) shuffled_data_for_gallery = [(res["image"], f"Image {i+1}") for i, res in enumerate(shuffled_results)] correct_mapping = {i: res["label"] for i, res in enumerate(shuffled_results)} print("Correct mapping (hidden):", correct_mapping) return shuffled_data_for_gallery, correct_mapping, prompt, seed, results, "Generation complete! Make your guess.", None, gr.update(interactive=True), gr.update(interactive=True) def check_guess(user_guess, correct_mapping_state): if not isinstance(correct_mapping_state, dict) or not correct_mapping_state: return "Please generate images first (state is empty or invalid)." if user_guess is None: return "Please select which image you think is quantized." quantized_image_index = -1 quantized_label_actual = "" for index, label in correct_mapping_state.items(): if "Quantized" in label: quantized_image_index = index quantized_label_actual = label break if quantized_image_index == -1: return "Error: Could not find the quantized image in the mapping data." correct_guess_label = f"Image {quantized_image_index + 1}" if user_guess == correct_guess_label: feedback = f"Correct! {correct_guess_label} used the {quantized_label_actual} model." else: feedback = f"Incorrect. The quantized image ({quantized_label_actual}) was {correct_guess_label}." return feedback EXAMPLE_DIR = Path(__file__).parent / "examples" EXAMPLES = [ { "prompt": "A photorealistic portrait of an astronaut on Mars", "files": ["astronauts_seed_6456306350371904162.png", "astronauts_bnb_8bit.png"], "quantized_idx": 1, "quant_method": "8-bit bnb", "summary": "Astronaut on Mars", }, { "prompt": "Water-color painting of a cat wearing sunglasses", "files": ["watercolor_cat_bnb_8bit.png", "watercolor_cat_seed_14269059182221286790.png"], "quantized_idx": 0, "quant_method": "8-bit bnb", "summary": "Cat with Sunglasses", }, # { # "prompt": "Neo-tokyo cyberpunk cityscape at night, rain-soaked streets, 8-K", # "files": ["cyber_city_q.jpg", "cyber_city.jpg"], # "quantized_idx": 0, # }, ] def load_example(idx): ex = EXAMPLES[idx] imgs = [Image.open(EXAMPLE_DIR / f) for f in ex["files"]] gallery_items = [(img, f"Image {i+1}") for i, img in enumerate(imgs)] mapping = {i: (f"Quantized ({ex['quant_method']})" if i == ex["quantized_idx"] else "Original") for i in range(2)} return gallery_items, mapping, f"{ex['prompt']}" def _accuracy_string(correct: int, attempts: int) -> tuple[str, float]: if attempts: pct = 100 * correct / attempts return f"{pct:.1f}%", pct return "N/A", -1.0 def update_leaderboards_data(): agg = _load_agg_stats() quant_rows = [] for method, stats in agg.items(): acc_str, acc_val = _accuracy_string(stats["correct"], stats["attempts"]) quant_rows.append([ method, stats["correct"], stats["attempts"], acc_str ]) quant_rows.sort(key=lambda r: r[1]/r[2] if r[2] != 0 else 1e9) return quant_rows quant_df = gr.DataFrame( headers=["Method", "Correct Guesses", "Total Attempts", "Detectability %"], interactive=False, col_count=(4, "fixed") ) with gr.Blocks(title="FLUX Quantization Challenge", theme=gr.themes.Soft()) as demo: gr.Markdown("# FLUX Model Quantization Challenge") with gr.Tabs(): with gr.TabItem("Challenge"): gr.Markdown( "Compare the original FLUX.1-dev (BF16) model against a quantized version (4-bit or 8-bit bnb). " "Enter a prompt, choose the quantization method, and generate two images. " "The images will be shuffled, can you spot which one was quantized?" ) gr.Markdown("### Examples") ex_selector = gr.Radio( choices=[ex["summary"] for ex in EXAMPLES], label="Choose an example prompt", interactive=True, ) gr.Markdown("### …or create your own comparison") with gr.Row(): prompt_input = gr.Textbox(label="Enter Prompt", scale=3) quantization_choice_radio = gr.Radio( choices=["8-bit bnb", "4-bit bnb"], label="Select Quantization", value="8-bit bnb", scale=1 ) generate_button = gr.Button("Generate & Compare", variant="primary", scale=1) output_gallery = gr.Gallery( label="Generated Images", columns=2, height=606, object_fit="contain", allow_preview=True, show_label=True, ) gr.Markdown("### Which image used the selected quantization method?") with gr.Row(): image1_btn = gr.Button("Image 1") image2_btn = gr.Button("Image 2") feedback_box = gr.Textbox(label="Feedback", interactive=False, lines=1) with gr.Row(): session_score_box = gr.Textbox(label="Your accuracy this session", interactive=False) gr.Markdown(""" ### Dataset Information Unless you opt out below, your submissions will be recorded in a dataset. This dataset contains anonymized challenge results including prompts, images, quantization methods, and whether guesses were correct. """) opt_out_checkbox = gr.Checkbox( label="Opt out of data collection (don't record my submissions to the dataset)", value=False ) correct_mapping_state = gr.State({}) session_stats_state = gr.State( {"8-bit bnb": {"attempts": 0, "correct": 0}, "4-bit bnb": {"attempts": 0, "correct": 0}} ) is_example_state = gr.State(False) prompt_state = gr.State("") seed_state = gr.State(None) results_state = gr.State([]) def _load_example_and_update_dfs(sel_summary): idx = next((i for i, ex in enumerate(EXAMPLES) if ex["summary"] == sel_summary), -1) if idx == -1: print(f"Error: Example with summary '{sel_summary}' not found.") return (gr.update(), gr.update(), gr.update(), False, gr.update(), "", None, []) ex = EXAMPLES[idx] gallery_items, mapping, prompt = load_example(idx) quant_data = update_leaderboards_data() return gallery_items, mapping, prompt, True, quant_data, "", None, [] ex_selector.change( fn=_load_example_and_update_dfs, inputs=ex_selector, outputs=[output_gallery, correct_mapping_state, prompt_input, is_example_state, quant_df, prompt_state, seed_state, results_state], ).then( lambda: (gr.update(interactive=True), gr.update(interactive=True)), outputs=[image1_btn, image2_btn], ) generate_button.click( fn=generate_images, inputs=[prompt_input, quantization_choice_radio], outputs=[output_gallery, correct_mapping_state, prompt_state, seed_state, results_state, feedback_box] ).then( lambda: False, # for is_example_state outputs=[is_example_state] ).then( lambda: (gr.update(interactive=True), gr.update(interactive=True), ""), outputs=[image1_btn, image2_btn, feedback_box], ) def choose(choice_string, mapping, session_stats, is_example, prompt, seed, results, opt_out): feedback = check_guess(choice_string, mapping) if not mapping: return feedback, gr.update(), gr.update(), "", session_stats, gr.update() quant_label_from_mapping = next((label for label in mapping.values() if "Quantized" in label), None) if not quant_label_from_mapping: print("Error: Could not determine quantization label from mapping:", mapping) return ("Internal Error: Could not process results.", gr.update(interactive=False), gr.update(interactive=False), "", session_stats, gr.update()) quant_key = "8-bit bnb" if "8-bit bnb" in quant_label_from_mapping else "4-bit bnb" got_it_right = "Correct!" in feedback sess = session_stats.copy() if not is_example: # Only log and update stats if it's not an example run sess[quant_key]["attempts"] += 1 if got_it_right: sess[quant_key]["correct"] += 1 session_stats = sess # Update the state for the UI AGG_STATS = _load_agg_stats() AGG_STATS[quant_key]["attempts"] += 1 if got_it_right: AGG_STATS[quant_key]["correct"] += 1 _save_agg_stats(AGG_STATS) if not HF_TOKEN: print("Warning: HF_TOKEN not set. Skipping dataset logging.") elif not results: print("Warning: Results state is empty. Skipping dataset logging.") elif opt_out: print("User opted out of dataset logging. Skipping.") else: print(f"Logging guess to HF Dataset: {HF_DATASET_REPO_ID}") original_image = None quantized_image = None quantized_image_pos = -1 for shuffled_idx, original_label in mapping.items(): if "Quantized" in original_label: quantized_image_pos = shuffled_idx break original_image = next((res["image"] for res in results if "Original" in res["label"]), None) quantized_image = next((res["image"] for res in results if "Quantized" in res["label"]), None) if original_image and quantized_image: expected_features = Features({ "timestamp": Value("string"), "prompt": Value("string"), "quantization_method": Value("string"), "seed": Value("string"), "image_original": HFImage(), "image_quantized": HFImage(), "quantized_image_displayed_position": Value("string"), "user_guess_displayed_position": Value("string"), "correct_guess": Value("bool"), "username": Value("string"), # Handles None }) new_data_dict_of_lists = { "timestamp": [datetime.now().isoformat()], "prompt": [prompt], "quantization_method": [quant_key], "seed": [str(seed)], "image_original": [original_image], "image_quantized": [quantized_image], "quantized_image_displayed_position": [f"Image {quantized_image_pos + 1}"], "user_guess_displayed_position": [choice_string], "correct_guess": [got_it_right], "username": [None], # Log None for username } try: existing_ds = load_dataset( HF_DATASET_REPO_ID, split="train", token=HF_TOKEN, features=expected_features, ) new_row_ds = Dataset.from_dict(new_data_dict_of_lists, features=expected_features) combined_ds = concatenate_datasets([existing_ds, new_row_ds]) combined_ds.push_to_hub(HF_DATASET_REPO_ID, token=HF_TOKEN, split="train") print(f"Successfully appended guess to {HF_DATASET_REPO_ID} (train split)") except Exception as e: print(f"Could not load or append to existing dataset/split. Creating 'train' split with the new item. Error: {e}") ds_new = Dataset.from_dict(new_data_dict_of_lists, features=expected_features) ds_new.push_to_hub(HF_DATASET_REPO_ID, token=HF_TOKEN, split="train") print(f"Successfully created and logged new 'train' split to {HF_DATASET_REPO_ID}") else: print("Error: Could not find original or quantized image in results state for logging.") def _fmt(d): a, c = d["attempts"], d["correct"] pct = 100 * c / a if a else 0 return f"{c} / {a} ({pct:.1f}%)" session_msg = ", ".join( f"{k}: {_fmt(v)}" for k, v in sess.items() ) quant_data = update_leaderboards_data() return (feedback, gr.update(interactive=False), gr.update(interactive=False), session_msg, session_stats, # Return the potentially updated session_stats quant_data) image1_btn.click( fn=lambda mapping, sess, is_ex, p, s, r, opt_out: choose("Image 1", mapping, sess, is_ex, p, s, r, opt_out), inputs=[correct_mapping_state, session_stats_state, is_example_state, prompt_state, seed_state, results_state, opt_out_checkbox], outputs=[feedback_box, image1_btn, image2_btn, session_score_box, session_stats_state, quant_df], ) image2_btn.click( fn=lambda mapping, sess, is_ex, p, s, r, opt_out: choose("Image 2", mapping, sess, is_ex, p, s, r, opt_out), inputs=[correct_mapping_state, session_stats_state, is_example_state, prompt_state, seed_state, results_state, opt_out_checkbox], outputs=[feedback_box, image1_btn, image2_btn, session_score_box, session_stats_state, quant_df], ) with gr.TabItem("Leaderboard"): gr.Markdown("## Quantization Method Leaderboard *(Lower % ⇒ harder to detect)*") leaderboard_tab_quant_df = gr.DataFrame( headers=["Method", "Correct Guesses", "Total Attempts", "Detectability %"], interactive=False, col_count=(4, "fixed"), label="Quantization Method Leaderboard" ) def update_all_leaderboards_for_tab(): q_rows = update_leaderboards_data() return q_rows # Only return quantization method data demo.load(update_all_leaderboards_for_tab, outputs=[ leaderboard_tab_quant_df, ]) if __name__ == "__main__": demo.launch(share=True)