Spaces:
Runtime error
Runtime error
detroitnatif
commited on
Commit
·
786df00
1
Parent(s):
964e814
Adding GroqSearch Space
Browse files- researcher.py +100 -0
researcher.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from config import *
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv, find_dotenv
|
4 |
+
import json
|
5 |
+
import requests
|
6 |
+
from langchain_groq import ChatGroq
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
from langchain.document_loaders.url import UnstructuredURLLoader
|
11 |
+
from langchain.vectorstores.faiss import FAISS
|
12 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
13 |
+
import os
|
14 |
+
load_dotenv(find_dotenv())
|
15 |
+
|
16 |
+
class Researcher:
|
17 |
+
|
18 |
+
def __init__(self):
|
19 |
+
self.serper_api_key = os.getenv("SERPER_API_KEY")
|
20 |
+
self.groq_api_key = os.getenv("GROQ_API_KEY")
|
21 |
+
self.prompt_template = PromptTemplate(
|
22 |
+
template=PROMPT_TEMPLATE,
|
23 |
+
input_variables=INPUT_VARIABLES
|
24 |
+
)
|
25 |
+
self.text_splitter = RecursiveCharacterTextSplitter(
|
26 |
+
separators=SEPARATORS,
|
27 |
+
chunk_size=CHUNK_SIZE,
|
28 |
+
chunk_overlap=CHUNK_OVERLAP
|
29 |
+
)
|
30 |
+
self.llm = ChatGroq(temperature=0.5, model_name="mixtral-8x7b-32768", groq_api_key=self.groq_api_key)
|
31 |
+
self.hfembeddings = HuggingFaceEmbeddings(
|
32 |
+
model_name=EMBEDDER,
|
33 |
+
model_kwargs={'device': 'cpu'}
|
34 |
+
)
|
35 |
+
|
36 |
+
def search_articles(self, query):
|
37 |
+
url = "https://google.serper.dev/search"
|
38 |
+
data = json.dumps({"q": query})
|
39 |
+
|
40 |
+
headers = {
|
41 |
+
'X-API-KEY': self.serper_api_key,
|
42 |
+
'Content-Type': 'application/json'
|
43 |
+
}
|
44 |
+
|
45 |
+
try:
|
46 |
+
response = requests.post(url, headers=headers, data=data)
|
47 |
+
response.raise_for_status() # Raises an HTTPError for bad responses
|
48 |
+
return response.json()
|
49 |
+
except requests.exceptions.HTTPError as e:
|
50 |
+
print(f"HTTP Error: {e}")
|
51 |
+
except requests.exceptions.ConnectionError as e:
|
52 |
+
print(f"Connection Error: {e}")
|
53 |
+
except requests.exceptions.Timeout as e:
|
54 |
+
print("Timeout Error:", e)
|
55 |
+
except requests.exceptions.RequestException as e:
|
56 |
+
print("Unexpected Error:", e)
|
57 |
+
return {} # Return an empty dict in case of failure
|
58 |
+
|
59 |
+
|
60 |
+
def research_answerer(self):
|
61 |
+
|
62 |
+
research_qa_chain = RetrievalQA.from_chain_type(
|
63 |
+
llm=self.llm,
|
64 |
+
chain_type=CHAIN_TYPE,
|
65 |
+
retriever= self.db.as_retriever(search_kwargs=SEARCH_KWARGS),
|
66 |
+
return_source_documents=True,
|
67 |
+
verbose=True,
|
68 |
+
chain_type_kwargs={"prompt": self.prompt_template}
|
69 |
+
)
|
70 |
+
return research_qa_chain
|
71 |
+
|
72 |
+
def get_urls(self, articles):
|
73 |
+
urls = []
|
74 |
+
try:
|
75 |
+
urls.append(articles["answerBox"]["link"])
|
76 |
+
except:
|
77 |
+
pass
|
78 |
+
for i in range(0, min(3, len(articles["organic"]))):
|
79 |
+
urls.append(articles["organic"][i]["link"])
|
80 |
+
return urls
|
81 |
+
|
82 |
+
def get_content_from_urls(self, urls):
|
83 |
+
loader = UnstructuredURLLoader(urls=urls)
|
84 |
+
research_content = loader.load()
|
85 |
+
return research_content
|
86 |
+
|
87 |
+
def research_given_query(self, research_objective, research_content):
|
88 |
+
|
89 |
+
docs = self.text_splitter.split_documents(research_content)
|
90 |
+
self.db = FAISS.from_documents(documents=docs, embedding=self.hfembeddings)
|
91 |
+
bot = self.research_answerer()
|
92 |
+
research_out =bot({"query": research_objective})
|
93 |
+
return research_out["result"]
|
94 |
+
|
95 |
+
def research(self, query):
|
96 |
+
search_articles = self.search_articles(query)
|
97 |
+
urls = self.get_urls(search_articles)
|
98 |
+
research_content = self.get_content_from_urls(urls)
|
99 |
+
answer = self.research_given_query(query, research_content)
|
100 |
+
return answer
|