File size: 6,565 Bytes
528e8ec
 
 
 
 
7f17eb9
5ece324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528e8ec
5ece324
 
 
528e8ec
5ece324
528e8ec
5ece324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf2acac
 
 
 
 
 
 
 
 
 
 
 
 
 
7752e9a
bf2acac
 
 
5ece324
 
 
bf2acac
5ece324
 
 
 
 
 
 
bf2acac
5ece324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572dfd3
 
 
 
 
5ece324
 
 
 
 
 
 
 
 
83645f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from openai import OpenAI
import gradio as gr
import json
from bot_actions import functions_dictionary
import os
 
CSS ="""
.contain { display: flex; flex-direction: column; }
.svelte-vt1mxs div:first-child { flex-grow: 1; overflow: auto;}
#chatbot { flex-grow: 1; overflow: auto;}
footer {display: none !important;}
.app.svelte-182fdeq.svelte-182fdeq {
  max-width: 100vw !important;
}
#main_container {
  height: 95vh;
}
#markup_container {
  height: 100%;
  overflow:auto;
}
"""

openAIToken = os.environ['openAIToken']
assistantId = os.environ['assistantId']
initial_message = os.environ['initialMessage']

client = OpenAI(api_key=openAIToken)

def handle_requires_action(data):
  actions_results = []
  for tool in data.required_action.submit_tool_outputs.tool_calls:
    function_name = tool.function.name
    function_args = json.loads(tool.function.arguments)
    print(function_name)
    print(function_args)
    try:
      result = functions_dictionary[tool.function.name](**function_args)
      print("Function result:", result)
      actions_results.append({"tool_output" : {"tool_call_id": tool.id, "output": result["message"]}})
    except Exception as e:
      print(e)

    
  # Submit all tool_outputs at the same time
  return actions_results 


def create_thread_openai(sessionStorage):
  streaming_thread = client.beta.threads.create()
  sessionStorage["threadId"] = streaming_thread.id
  return sessionStorage

def add_message_to_openai(text, threadId):
  print("User message: ", text)
  return client.beta.threads.messages.create(
    thread_id=threadId,
    role="user",
    content=text
  )


def process_text_chunk(text, storage):
  print(text, end="", flush=True)
  local_message = None
  accumulative_string = storage["accumulative_string"] + text
  local_message = accumulative_string
  return local_message, storage

def handle_events(threadId, chat_history, storage):
  storage.update({
    "accumulative_string" : "",
    "markup_string": "",
  })
  try:
    with client.beta.threads.runs.stream(
      thread_id=threadId,
      assistant_id=assistantId
    ) as stream:
      for event in stream:
        if event.event == "thread.message.delta" and event.data.delta.content:
          text = event.data.delta.content[0].text.value
          local_message, storage = process_text_chunk(text, storage)
          if local_message is not None:
            chat_history[-1][1] += local_message 
          yield [chat_history,  storage]
        if event.event == 'thread.run.requires_action':
          result = handle_requires_action(event.data)
          tool_outputs = [x["tool_output"] for x in result]
          with client.beta.threads.runs.submit_tool_outputs_stream(
            thread_id=stream.current_run.thread_id,
            run_id=event.data.id,
            tool_outputs=tool_outputs,
          ) as action_stream:
            for text in action_stream.text_deltas:
              local_message, storage = process_text_chunk(text, storage)
              if local_message is not None:
                chat_history[-1][1] += local_message
              yield [chat_history, storage]
            action_stream.close()
      stream.until_done()
      print("")
      return [chat_history, storage]
  except Exception as e:
    print(e)
    chat_history[-1][1] = "Error occured during processing your message. Please try again"
    yield [chat_history, storage]

def check_moderation_flag(message):
  moderation_response = client.moderations.create(input=message, model="omni-moderation-latest")
  print("Moderation respones: ", moderation_response)
  flagged = moderation_response.results[0].flagged
  return flagged

def process_user_input(text, thread_id, chat_history, storage):
  print("User input: ", text)
  is_flagged = check_moderation_flag(text)
  print("Check is flagged:", is_flagged)
  if is_flagged:
    chat_history[-1][1] = "Your request contains some inappropriate information. We cannot proceed with it."
    yield [chat_history, storage]
  else:
    add_message_to_openai(text, thread_id)
    for response in handle_events(thread_id, chat_history, storage):
      yield response

def initiate_chatting(chat_history, storage):
  threadId = storage["threadId"]
  chat_history = [[None, ""]]
  for response in process_user_input(initial_message, threadId, chat_history, storage):
    yield response

def respond_on_user_msg(chat_history, storage):
  message = chat_history[-1][0]
  threadId = storage["threadId"]
  print("Responding for threadId: ", threadId)
  chat_history[-1][1] = ""
  for response in process_user_input(message, threadId, chat_history, storage):
    yield response

def create_chat_tab():
  msg = gr.Textbox(label="Answer")
  storage = gr.State({"accumulative_string": ""})
  chatbot = gr.Chatbot(label="Board of Advisors Assistant", line_breaks=False, height=300, show_label=False, show_share_button=False, elem_id="chatbot")

  def user(user_message, history):
    return "", history + [[user_message, None]]

  def disable_msg():
    message_box = gr.Textbox(value=None, interactive=False)
    return message_box
  
  def enable_msg():
    message_box = gr.Textbox(value=None, interactive=True)
    return message_box

  add_user_message_flow = [user, [msg,chatbot],  [msg,chatbot]]
  chat_response_flow = [respond_on_user_msg, [chatbot, storage], [chatbot, storage]]
  disable_msg_flow = [disable_msg, None, msg] 
  enable_msg_flow = [enable_msg, None, msg]

  with gr.Blocks(css=CSS, fill_height=True) as chat_view:
    storage.render()
    with gr.Row(elem_id="main_container"):
      with gr.Column(scale=4):
        chatbot.render()
        examples = gr.Examples(examples=[
          "I need someone that can help me with real estate in Texas",
          "I'm looking for help with payment system for my business",
          "I need help to develop my leadership skills"], 
          inputs=msg, 
          )
        msg.render()
    print(gr.Request)

    msg.submit(*add_user_message_flow
        ).then(*disable_msg_flow
        ).then(*chat_response_flow
        ).then(*enable_msg_flow)

    examples.load_input_event.then(*add_user_message_flow
        ).then(*disable_msg_flow
        ).then(*chat_response_flow
        ).then(*enable_msg_flow)
    
    chat_view.load(*disable_msg_flow
        ).then(create_thread_openai, inputs=storage, outputs=storage
        ).then(initiate_chatting, inputs=[chatbot, storage], outputs=[chatbot, storage]
        ).then(*enable_msg_flow)
  return chat_view

if __name__ == "__main__":
  chat_view = create_chat_tab()
  chat_view.launch()